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Finding and exploiting structure in complex systems via geometric and

statistical methods

Piyush Grover

Abstract

The dynamics of a complex system can be understood by analyzing the phase space structure of

that system. We apply geometric and statistical techniques to two Hamiltonian systems to find

and exploit structure in the phase space that helps us get qualitative and quantitative results about

the phase space transport. While the structure can be revealed by the study of invariant manifolds

of fixed points and periodic orbits in the first system, there do not exist any fixed points (and

hence invariant manifolds) in the second system. The use of statistical (or measure theoretic) and

topological methods reveals the phase space structure even in the absence of fixed points or stable

and unstable invariant manifolds.

The first problem we study is the four-body problem in the context of a spacecraft in the presence

of a planet and two of its moons, where we exploit the phase space structure of the problem to

devise an intelligent control strategy to achieve mission objectives. We use a family of analytically

derived controlled Keplerian Maps in the Patched-Three-Body framework to design fuel efficient

trajectories with realistic flight times. These maps approximate the dynamics of the Planar Circular

Restricted Three Body Problem (PCR3BP) and we patch solutions in two different PCR3BPs to

form the desired trajectories in the four body system.

The second problem we study concerns phase space mixing in a two-dimensional time dependent

Stokes flow system. Topological analysis of the braiding of periodic points has been recently used

to find lower bounds on the complexity of the flow via the Thurston-Nielsen classification theorem

(TNCT). We extend this framework by demonstrating that in a perturbed system with no apparent

periodic points, the almost-invariant sets computed using a transfer operator approach are the

natural objects on which to pin the TNCT.
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intersection of the tube with Σe, a Poincaré map at periapsis in the exterior realm. (b) The

numerically computed location of the same exit on Σe, along with the rest of the structure

on the phase space of the map. The Spacecraft which reaches the exit will subsequently

enter the phase space realm around the perturbing moon. This figure has been taken from

[1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.9 Inter-moon transfer via resonant gravity assists. (a) The circular orbits of two moons/perturbers.

Once the spacecraft exits the outer moon’s (M1’s) sphere-of-influence, it travels in an per-

turbed (three-body) elliptical orbit about Jupiter. The spacecraft gets a gravity assist from

the outer moon when it passes through apojove (denoted A). Note that the several flybys

have the same apojove direction because the spacecraft orbit is in near-resonance with the

outer moon’s orbital period and hence it encounters the moon at about the same point in

its orbit each time. Once the spacecraft orbit comes close to grazing the orbit of the inner

moon, M2, the inner moon becomes the dominant perturber. The spacecraft orbit where

this occurs is called the switching orbit and is denoted S. (b) The spacecraft now receives

gravity assists from M2 at perijove (P ), where the near-resonance condition also applies.

The spacecraft is then ballistically captured by M2. . . . . . . . . . . . . . . . . . . 61

x



3.10 Schematic trajectory in a-e plane showing various regions. Various apoapses/periapses are

starred. The straight lines represent the constant three body energy contours in J-G-S and

J-E-S systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.11 Trajectory found using the Patched Three Body Approximation. a). Semi-major axis time

history b). Trajectory in ’a-e’ plane. c) Jacobi Constant for J-G-S system d). Jacobi

Constant for J-E-S system. The trajectory was obtained by integrating the full 4-body

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.12 The coarse control algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.13 Sample trajectory designed using the algorithm. (a) Plot of Semi-major axis vs. periapse

angle. (b) Time history of semi-major axis. The spacecraft repeatedly visits the region of

large decrease in semi-major axis. . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.14 Trajectory for the Jupiter-Europa-Ganymede system using patched three body approach.

(a) Time history of semi-major axis. b). Semi-major axis vs. eccentricity plot with three-

body energy contours lines in the background. . . . . . . . . . . . . . . . . . . . . . 71

3.15 Plot showing the tradeoff between control used and number of iterations required for two dif-

ferent intial conditions leading to capture around Europa for the Jupiter-Europa-Spacecraft

planar CR3BP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1 Streamlines with both top and bottom walls moving under piecewise uniform velocity: (a)

0 ≤ t ≤ τf/2 (b) τf/2 ≤ t ≤ τf . Bottom boundary velocity is mirror image of the top

boundary velocity about the horizontal axis. . . . . . . . . . . . . . . . . . . . . . . 81

4.2 (a).Stretching of material lines for a typical set of parameters in piecewise steady wide-cavity

flow. (b) Braiding in the reference case . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3 Variation of topological entropy as a function of τf . Also shown is the lower bound hTN,3

computed via TN theory for the braid on 3 strands computed at design point. . . . . . . 85

xi
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condition was iterated forward for 50000 times (a) θi = 0 (b) θi = π/8 (c) θi = π/4 . . . 109

4.21 Direction of movement of different resonances as stirrers. Two of the resonances that move

anti-clockwise are shown with red circles inside them, while the the two with the green

circles move clockwise as θi is increased from 0. The resonance containing the blue circle

acts like the central stirrer for braid analysis. . . . . . . . . . . . . . . . . . . . . . 110

4.22 (a) The braiding motion of the two counter-rotating saddle points. (b) The mathematical

braid formed by the motion. This braid is topologically trivial and TNCT does not give

any lower bound on this braid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.23 The discretization of the two dimensional section in 16000 boxes. The PF operator is

computed over the region shown in black, called the recurrent set. . . . . . . . . . . . 114

4.24 Four eigenvectors corresponding to leading eigenvalues (< 1) of the reversibilized PF op-

erator M0. Compare with 4.20(a) and notice that these eigenvectors capture the various

resonant islands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.25 Almost invariant set structure extracted using the second eigenvector for (a) M0 (b) Mπ/2

(c) M5π/8 (d) M7π/8. The regions shown in green and blue have minimal transport amongst

them. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

xiv



List of Tables

4.1 List of topological entropy values of the braids formed by AIS structures as

τf is decreased below 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

xv



Chapter 1

Introduction

The analysis of chaotic nonlinear dynamical systems has attracted the interest of scholars

from a wide variety of mathematical fields. From pure mathematicians working in ergodic

theory, to physicists analyzing plasma dynamics, to mechanical engineers trying to suppress

flutter in vibrating machinery, this field has generated a lot of activity in past several decades.

One of the first lessons learned in the study of such systems has been that simply generating

long individual trajectories via computer simulations usually results in very limited under-

standing of the dynamics. As a result, techniques that focus on identifying and exploiting the

underlying structure of these dynamical systems (defined by ODEs, PDEs, discrete maps or

data-sets) have proved invaluable in this cause. This dissertation describes the application

of such techniques to the study of two complex systems and also reports some numerical

results that combine the topological and statistical techniques in a novel way.

In this dissertation, we focus on applying geometric and statistical techniques to find and

exploit structure in phase space that helps us get qualitative and quantitative results about

the transport between different regions of interest in phase space. While the structure can

be revealed by the study of invariant manifolds of fixed points or periodic orbits in some

systems, there are many complex systems where there do not exist any fixed points (and

hence invariant manifolds). The use of statistical (or measure theoretic) and topological

1



methods can reveal phase space structure even in the absence of fixed points or stable and

unstable invariant manifolds.

The first system [2] that we study is the four-body problem in the context of a spacecraft in

the presence of a planet and two of its moons, where we exploit the phase space structure

of the problem to devise an intelligent control strategy to achieve control objectives. This

problem can be broken into 2 three-body problems under suitable assumptions and analyzed

in the framework of the Planar Circular Restricted Three Body Problem (PCR3BP). The

PCR3BP, which is a special case of the classical three body problem, is treated as a per-

turbation of the 2-body problem, and we use an averaged analytical approximation of the

natural dynamics of the PCR3BP (in the form of a two-dimensional Poincaré map) as a

starting point for our analysis. This Poincaré map reveals the structure of the problem, and

phase space transport in this system can be analyzed by studying the fixed points, and their

invariant manifolds. We modify this map to add control and use the new controlled map to

achieve fuel efficient trajectories with realistic times-of-flight.

The second problem [3] we study concerns phase space mixing using the lid-driven wide-

cavity Stokes flow system as our testbed. The phase space structure consisting of fixed

points and elliptical islands has been recently used to find lower bounds on complexity of

the flow of this system. Small perturbations in certain design parameters of this system can

lead to loss of fixed points of low period, and an apparent loss of structure. We use the

method of almost-invariant sets to demonstrate that the underlying phase space structure is

still preserved in some statistical sense, even under appreciable change in parameter values.

Using this approach, an analysis of complexity via topological methods that give a lower

bound on the topological entropy (via use of the Thurston-Nielsen classification theorem)

can still be carried out in an analogous manner.

The dissertation is arranged as follows. Chapter 2 reviews the mathematical techniques used

and referred to throughout this document and lists relevant literature sources. Chapter 3

deals with the trajectory design problem in the four-body planet-moon environment. In

2



Chapter 4, we study phase space mixing and transport by combining statistical and topo-

logical approaches. Finally, in chapter 5, we make some concluding remarks.
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Chapter 2

Background On Mathematical

Techniques

This chapter reviews the mathematical concepts and ideas that will be used and referred to

throughout this dissertation. The following sections describe the three varying approaches

to analyzing dynamical systems, i.e.,

(i) Geometric approach: The study of geometric objects like fixed points, periodic orbits and

their stable and unstable manifolds,

(ii) Statistical approach: The study of statistical (or measure theoretic) quantities like in-

variant measures, time and space averages, and almost invariant sets.

(iii) Topological approach: The study of topological properties like topological entropy and

mixing.

We make connections between these approaches at appropriate places throughout the dis-

sertation.
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2.1 Geometric approach

In this section, we review the properties of a class of dynamical systems that we analyze

in later chapters. Since both the systems we consider in this dissertation can be (and are)

studied by construction of two-dimensional area preserving maps, we will focus our attention

on that class of systems.

Poincaré was the first to analyze the global dynamics of a system of differential equations

by studying an associated discrete time system (or a map), and he used this technique to

study the three body problem. Poincaré maps can arise naturally in a number of ways in

dynamical systems; the following two cases are especially relevant to our discussion in later

chapters [4].

a) In the study of orbit structure near a periodic orbit of a system of autonomous

ordinary differential equations

Consider the following continuous-time dynamical system, described by autonomous ordinary

differential equations,

ẋ = f(x), x ∈ ℜn, (2.1)

where f : U → ℜn is Cr on some open set U ∈ ℜn. Let γ be a periodic orbit (with period T )

of the flow φt generated by the above system in ℜn. Let x0 ∈ ℜn be any point on the orbit

γ, and
∑

be a n− 1 dimensional cross-section transverse to γ at x0. Given the smoothness

assumptions on f , we can find an open set V ⊂ Σ such that trajectories starting in V return

to Σ in a time close to T . The map that takes points in V back to Σ is the associated

Poincaré map, denoted by P , i.e.,

P : V → Σ (2.2)

x→ φτ(x)(x),

where τ(x) is the time of flight of the point x to Σ. Note that by definition, τ(x0) = T , and

P (x0) = x0. This means that x0 is a fixed point of the map P . Therefore, a fixed point of
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the map P corresponds to a periodic orbit of the dynamical system described in equation

(2.1). The stability of x0 for P reflects the stability of γ for the flow φt, i.e., the periodic

orbit γ of the continuous dynamical system is stable if and only if the fixed point x0 of the

discrete dynamical system is stable. This result can be derived by the use of the theory of

Floquet multipliers, which states the following:

Σ x0

P (x0)

φt

Figure 2.1: This illustration shows a Poincaré surface of section Σ of the flow map φ. The point x0 ∈ Σ is

mapped by Poincaré map back to Σ at P (x0) .

Theorem 1. (Floquet Theorem) Let ξ be a fundamental matrix solution of the periodic

system ẋ = A(t)x, where A(t) a periodic function with period T . Then, for all t ∈ ℜ,
ξ(t + T ) = ξ(t)ξ−1(0)ξ(T ). In addition, for each matrix B (possibly complex) such that

eTB = ξ−1(0)ξ(T ), there is a periodic (with period T ) function R(t) such that

ξ(t) = R(t)etB for all t.

This theorem can be applied to our system by linearizing it around the periodic orbit γ,

i.e put A(t) = Df(γ(t)). Then, it follows that the behavior of solutions in the neighbor-

hood of γ is determined by the eigenvalues of the constant matrix eBT . These eigenvalues

λ1, ..., λn, (where λn = 1) are called Floquet multipliers. It also turns out that the eigen-
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values λ1 through λn−1 are also the eigenvalues of the Jacobian of the Poincaré map P .

The correspondence between stability of fixed points of P and periodic orbits of f follows

immediately.

Definition 1. The local stable manifold W s
loc of a fixed point x0 of any map P can be defined

as,

W s
loc(x0) = {x ∈ U |P j(x) ∈ U ∀j ∈ N and lim

j→∞
P j(x) → x0} (2.3)

where U is a neighborhood of the fixed point x0. Similarly, the local unstable manifold W u
loc

is defined as,

W u
loc(x0) = {x ∈ U |P−j(x) ∈ U ∀j ∈ N and lim

j→∞
P−j(x) → x0} (2.4)

Consider a vector field f in ℜ3, generating a flow given by φt(x), x ∈ ℜ3. Assume as before

that γ is a periodic solution with period T , and construct the Poincaré map P as before.

Additionally assume that the fixed point x0 of map P is of saddle type, i.e., it has a one-

dimensional stable manifold W s(x0) and a one-dimensional unstable manifold W u(x0) lying

in Σ. These manifolds can be related to the stable and unstable manifolds of the periodic

orbit γ by treating them as initial conditions, and doing a numerical continuation as follows:

W s(γ) = ∪t≤0φt(W
s
loc(x0)) (2.5)

W u(γ) = ∪t≥0φt(W
u
loc(x0)) (2.6)

Hence, in ℜ3, W s(γ) and W u(γ) are two-dimensional surfaces.

b) In the study of global solutions of a non-autonomous system of ordinary dif-

ferential equations with periodic time dependence

Consider the following system,

ẋ = f(x, t), (x, t) ∈ ℜn × ℜ, (2.7)

where f(·, t) = f(·, t+T ) is periodic in t with time period T = 2π/ω. The above system can

be written in an expanded phase space, by defining θ = ωt+ α as a state variable, where α
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is the chosen value of θ at time t = 0. Thus the new system becomes,

ẋ = f(x, θ), (2.8)

θ̇ = ω, (2.9)

where (x, θ) ∈ ℜn×S1, and the flow map is now given by φt = (x(t), θ(t) = ωt+α(mod2π)).

In this case, a global Poincaré section can be defined, since all the solutions of the original

system will be transversal to the following section,

Σθ0 = {(x, θ) ∈ ℜn × S1|θ = θ0 ∈ (0, 2π]} (2.10)

The resulting Poincaré map can be written as:

Pθ0 : Σ
θ0 → Σθ0 , (2.11)

x
(θ0 − α

ω

)
→ x

(θ0 − α + 2π

ω

)
(2.12)
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2.1.1 Generic properties of two-dimensional symplectic maps

Earlier in this section we discussed how discrete time maps in two-dimensions can be ob-

tained. We briefly discuss some features of a two-dimensional area-preserving map that

are generic in nature, i.e., they are expected to be present in all such maps irrespective of

the system the map is derived from [5]. We consider the standard map, which has been

widely studied in the literature for demonstrating the generic properties of maps derived

from Hamiltonian systems. The map T : S1 × S1 → S1 × S1 is given by,

T (θn, pn) = (θn + pn+1, pn +K sin(θn)), (2.13)

where both θ and p are taken modulo 2π. Here the phase space variable p is called the action

of the system, and θ is called the angle. The rotational invariant curves are the curves that

preserve an integral of the motion, wind around the angle coordinate and are homoemorphic

to p = 0, where as the librational invariant curves, while preserving an integral of the motion,

do not completely encircle the angle coordinate.

The phase space of this map varies greatly with variation in the parameter K and this

variation is shown in figure 2.2. The map is integrable for K = 0, i.e., the phase space

is fully foliated by rotational invariant curves (which are straight lines in this case) and

there is no irregular or chaotic motion. For a slightly higher value of K = 0.2, most of the

structure is still preserved, and most of the rotational invariant curves are intact. But there

are orbits that no longer lie on these invariant curves. A family of curves is observed, the so

called librational curves which are different in nature than the rotational invariant curves,

resulting in chains of alternating saddle and elliptical periodic points, and separated from

invariant curves by a separatrix. Such a region is called a resonance region, and is identified

by its resonance , generally expressed as a ratio m : n. An (m : n) resonance will have n

elliptical islands, consisting on n elliptical fixed points and n saddles. Iterating any of those

fixed points n times will lead to winding around m times around in the angle coordinate.

As we increase the value of K to 0.5, we observe that more such resonances show up, and

also observe that there has been a break up of the separatrix observed earlier. This break-up
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is a manifestation of transverse intersections of stable and unstable manifolds of the saddle

points in the resonance zone, and the presence of such an intersection means the map is

chaotic in the neighborhood of such a region. Increasing the value K to 0.95, we see what is

termed in the literature a “mixed” phase space i.e., a significant area in the phase space is

filled by the chaotic sea, and there are resonances of high periods. For K = 5, no rotational

invariant curves remain, and most of the phase space is chaotic.

(a) K=0.2 (b) K=0.65

(c) K=0.95 (d) K=5

Figure 2.2: Phase space of the standard map for different K values. Note the gradual break up of invariant

circles, and increase in the area of the chaotic zone.
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2.1.2 Transport in two-dimensional maps: lobe dynamics

So far, in this section we have seen how to obtain two-dimensional maps from continuous

time systems, and have also reviewed some of the generic properties of such maps. We briefly

review an important technique [6] that can be used to study transport in such maps. We

will restrict our attention to area-preserving diffeomorphisms,

f :M →M, (2.14)

where M is a differentiable , orientable two-dimensional manifold. Let pi, i = 1, 2, ..., N

denote a collection of saddle-type hyperbolic periodic points for f . We can assume they are

all fixed points by replacing f with a higher iterate of f for which each of them is a fixed

point. The one dimensional stable and unstable manifolds of pi are denoted by W s(pi) and

W u(pi).

Definition 2. Suppose q ∈ W s(pi) ∩W u(pj), and let S[pi, q] denote the segment of W s(pi)

with endpoints pi and q, and U [pj , q] denote the segment of W u(pj) with endpoints pj and q.

The q is called the primary intersection point (or pip) if S[pi, q) ∩ U [pj , q] = {q}.

Definition 3. Let q0, q1 ∈ W u(pj)∩W s(pi) be two adjacent pips, i.e., no other pips exist on

U [q0, q1] and S[q0, q1]. Then the region bounded by U [q0, q1]∩S[q0, q1] is referred to as a lobe.

Suppose W s(pi) and W u(pj) intersect in the pip q. Then the boundary B is defined as

S[pi, q] ∪ U [pj , q], and the transport across this boundary is mediated solely by the lobes.

Define the regions R1 and R2 as shown in figure 2.4. Define the regions L1,2(1) and L2,1(1)

as shown in figure 2.5. Then the following lemma applies:

Lemma 1. Under one iteration of f , the only points that can move from R1 to R2 by crossing

B are those in the lobe L1,2(1). Similarly, under one iteration of f , the only points that can

move from R2 to R1 by crossing B are those in the lobe L2,1(1). Hence the local flux across

B can be calculated by studying the dynamics of these lobes.
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pj

q0

q1

pi

Figure 2.3: This illustration shows two pips, q0 and q1, and the colored region is the lobe bounded by

U [q0, q1] ∩ S[q0, q1].

R2

R1

pi
pj

q

B

Figure 2.4: This figure illustrates the two regionsR1 and R2, and the boundaryB between them. Transport

across this boundary is mediated by lobes.
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L1,2(1)

L2,1(1)

pi
pj

f(L1,2(1))

f(L2,1(1))

f(q)f−1(q)

q

Figure 2.5: This illustration shows the transport across boundary defined earlier. The phase space volume

L1,2(1) in maroon will be mapped from inside to outside of boundary to f(L1,2(1)) in maroon in one iteration

of the map, while the region in green L2,1(1) is mapped from outside to inside in one iteration.

To study the transport mediated by lobes, we divide the region of interest into regions

Ri, i = 1, ..., NR. To keep track of how the mixing across various regions is taking place, we

assume each region Ri is filled with a species Si at time t = 0. The two quantites of interest

are:

1) ai,j(n) : The flux of species Si into region Rj on the nth iterate.

2) Ti,j(n): The total amount of species Si contained in region Rj immediately after the nth

iterate.

Denote by Li,j(m) the lobe that leaves Ri and enters Rj on the mth iterate. Also denote

by Lk
i,j(m) the portion of the lobe Li,j(m) that is occupied by species Sk. Denote by m the

Lebesgue measure. Then the following theorems holds:

Theorem 2. ai,j(n) = Ti,j(n)− Ti,j(n− 1) =

NR∑

k=1

[m(Li
k,j(n))−m(Li

j,k(n))]

This result expresses the flux of species Si into region Rj on the nth iterate in terms of parts

of lobes of entering and leaving the region Rj on the nth iterate that contain species Si. This

theorem can be derived by noting that since f is area-preserving, ai,j(n) = Ti,j(n)−Ti,j(n−1).

The detailed proof is given in [6].
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Theorem 3. m(Li
k,j(n)) =

NR∑

s=1

n∑

m=1

m(Lk,j(n) ∩ Ls,i(m))−
NR∑

s=1

n−1∑

m=1

m(Lk,j(n) ∩ Ls,i(m))

This result expresses the amount of species Si in lobe Lk,j(n) in terms of lobe intersections.

The detailed proof is given in the appendix of [6].
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2.2 Set oriented methods: Statistical approach to dy-

namical systems

In this section, we give a review of a class of techniques that exploit the statistical properties

of discrete-time dynamical systems, and enable us to numerically compute various mathe-

matical objects that quantify transport in a system by delineating statistically important

sets in the phase space. At the heart of this analysis lies the fact that under certain condi-

tions, nonlinear dynamical systems can be treated as Markov chains on a (large but finite

dimensional) state space. Instead of studying the time evolution of points in the original

phase space, we study how various probability measures propagate under the application of

the dynamics of the system. The propagator in this case is called the Perron-Frobenius

operator P [7] (not to be confused with the Poincare map in previous section) of the

underlying dynamical system.

The computations are based on an appropriate discretization of the P . The two major ideas

that enable such a discretization are : the classical convergence results for finite dimensional

approximations of compact operators and the results from ergodic theory, specifically the

approximation of physical measures (or SRB measures [8] in some special cases) by invariant

measures of stochastically perturbed systems. In contrast to other numerical techniques,

these methods do not rely on computation of single long term trajectories but rather use

the information from many short term trajectories. An appropriately discretized operator

contains all the important information about the dynamical system, and the various eigen-

vectors and eigenvalues of such a linear operator give an insight into transport in phase space

at various levels of detail.

We refer the reader to [9],[10],[7] and [11] for a more detailed treatment of the subject.
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2.2.1 Important concepts and definitions

Consider a discrete dynamical system (or a Poincaré map constructed on a continuous dy-

namical system):

xj+1 = f(xj), j = 0, 1, 2, ... (2.15)

where f : X → X is a now refers to a diffeomorphism on a compact subset X ⊂ ℜn. Let B

be the Borel σ-algebra on X , and denote by m the Lebesgue measure on B.

Definition 4. A subset A ⊂ X is called invariant if f(A) ⊆ A.

We note the fact that any discretization of the dynamical system over its phase space in-

troduces artificial noise, i.e. coarse-graining of the dynamics occurs in the process. Hence,

it is helpful to state some of the concepts in the context of noisy dynamical systems, since

the theory was developed in literature in that context [10]. We will give the expressions for

important quantities for the deterministic case along the way for the sake of clarity. We

assume the noise-less system is given by the mapping f as defined above.

Let p(x, ·) denote the stochastic transition function associated with the dynamical system of

interest, i.e., p(x,A) is the probability that the first iterate of x ∈ X lies in the set A ⊂ X .

Note that for the deterministic case, p(x, ·) = δf(x). We assume that for every x ∈ X , the

probability measure p(x, ·) is absolutely continuous with respect to the Lebesgue measure

m. Hence, we can write

p(x,A) =

∫

A

k(x, y)dm(y) (2.16)

for all A ⊂ B, with an appropriate transition density function k : X ×X → R. Clearly, we

see that the following relation holds:

∫

X

k(x, y)dm(y) = p(x,X) = 1 (2.17)

for all x ∈ X .
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We describe how we model the small random perturbations and hence, the stochastic tran-

sition function p. Let B denote the open unit ball in ℜn and χB the characteristic function

of B, i.e.,

χB(x) =




1 if ||x|| ≤ 1

0 otherwise.

(2.18)

For ǫ > 0, x, y ∈ X , we set

kǫ(x, y) =
1

ǫnm(B)
χB

(
1

ǫ
(y − x)

)
(2.19)

The above function evaluates to zero if the points x and y are more than distance ǫ apart from

each other. Hence our original transition density function can be replaced by kǫ(f(x), y).

Also, the stochastic transition pǫ can be defined as

pǫ(x,A) =

∫

A

kǫ(f(x), y)dm(y) (2.20)

Definition 5. The Perron-Frobenius operator P on any measure ν is defined as

Pν(A) =

∫
p(x,A)dµ(x) (2.21)

In the deterministic case, this reduces to

Pν(A) = ν(f−1(A)), (2.22)

where f describes the deterministic dynamical system defined in equation (2.15).

Definition 6. A measure µ is said to be invariant under the evolution of system defined by

stochastic transition function p if it satisfies

µ(A) =

∫
p(x,A)dν(x), (2.23)

for all A ∈ B.
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x

f(x)

Bǫ(f(x))

ǫ

x

Figure 2.6: Modeling of small random perturbations: The top figure shows the noiseless case, while the

bottom figure illustrates how small random perturbations are modeled.
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Note that the above two definitions imply that if µ is an invariant measure of the system,

then it satisfies the following equation:

µ(A) =

∫
p(x,A)dµ(x) = Pµ(A), (2.24)

for all A ∈ B. This implies that any invariant measure of the system will be an eigenfunction

of the Perron-Frobenius operator P with eigenvalue 1.

Definition 7. An invariant measure µ is an SRB measure if there exists a subset U ⊂ X

with m(U) > 0 and such that for each continuous function ψ

lim
n→∞

1

n

n−1∑

i=0

ψ(f i(x)) =

∫
ψdµ, (2.25)

for all x ∈ U .

The above relation always holds for almost all x which belong to sets having a non-zero µ

measure, by the Birkhoff Ergodic Theorem. The crucial difference in case the measure µ is a

SRB measure is that temporal average equals the spatial average for a set of initial conditions

that have positive Lebesgue measure m, i.e., it holds for some open set in the phase space

X , and hence is a more physically relevant measure, since the support of measure µ in X

could have Lebesgue measure m = 0. For this reason, SRB measures are also called natural

measures or physical measures.

2.2.2 Discretization of PF-operator

To numerically compute the PF-operator P , we need to discretize it over the section of

phase space of interest [10]. We discretize the domain X by a collection of small boxes, i.e

X ⊂ (B1 ∪ B2 ∪ ... ∪ Bn). The covering process can be efficiently implemented by use of

multilevel methods [10].

We then discretize the Perron-Frobenius operator by creating a n-state Markov chain, where

each box B ∈ (B1, B2, ..) corresponds to a state in the chain. For a deterministic system,
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Bi Bj

f−1(Bj)

Figure 2.7: Discretization of domain into boxes. This region in red is Bi ∩ f−1(Bj)

the stochastic matrix P = (Pij) of the Markov chain is

Pij =
m(Bi ∩ f−1(Bj))

m(Bi)
(2.26)

The (i, j)th entry of P is the probability that a randomly chosen point in Bi will be mapped

into Bj over one iteration. So the dynamics of Markov chain consist of the dynamics of the

map f plus some noise due to discretization. For the computation of the Pij , the Monte-Carlo

approach or a uniform grid over the boxes is generally used [11].

The first left eigenvector p of the matrix P provides an estimate of the physical-invariant

measure of the system, µ(Bi) = pi, discretized over the phase space. This measure can be

extended over any Borel-set A ∈ X by

µ(A) =
n∑

i=1

m(A ∩ Bi)

m(Bi)
pi

For the rest of the chapter, we use µ to denote the invariant measure of the system under

consideration, which will be in general different from the Lebesgue measure m.
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2.2.3 Almost-invariant-sets

Let p(A1, A2) be defined as the transition probability of mapping from set A1 into A2 under

the action of stochastic transition function p, as follows

p(A1, A2) =
1

µ(A1)

∫

A1

p(x,A2)dµ(x) (2.27)

Denote by ρµ(A), the quantity p(A,A). This is the fraction of phase space volume of set A

that maps back to the set over one iteration of the map.

Definition 8. A set A ⊂ X is said to be almost invariant if

ρµ(A) =
µ(A ∩ f−1(A))

µ(A)
≈ 1, (2.28)

i.e., the points in the set map back to the same set over one iteration of the map with high

probability, with the measure being the invariant measure µ.

A3

A2

A1

Figure 2.8: Partition into three almost invariant sets. The size of arrows signifies amount of transport.

The inter-set transport is minimized while the intra-set transport dominates.

We define the problem of finding structure and macro-scale dynamics of the given system as

follows [11].
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Problem statement: We want to form a partition of the phase space X into a given

number (say k) of sets (A1, A2, ....Ak) such that the phase space transport between these

sets is very unlikely. We also want these sets to be important statistically with respect to

the long term dynamics of the system. This can be formulated mathematically as follows:

We want to maximize the quantity

k∑

i=1

ρµ(Ai), with the constraint that µ(Ai) is not too small

compared to 1. Without loss of generality, we can restrict to only partitions (A1, A2, ....Ak)

such that each member Aj of such a partition is a union of some sets in (B1, B2, ...), i.e each

Aj = ∪i∈IBi, for some set of box indices I ∈ {1, 2, ...., n}.

We can express the quantity ρµ(A) solely in terms of the entries of the Markov matrix P ,

and its first left eigenvector p as defined above. Physically, ρµ(A) represents the fraction of

phase space volume within set A mapping back to itself, weighted with the invariant measure

of the matrix. Since the set A = ∪i∈IBi, it is easily seen that

ρµ(A) =

∑
i∈I

∑
j∈I µ(f

−1(Bj) ∩ Bi)∑
i∈I µ(Bi)

(2.29)

Using the expressions for pi, and Pij, we see that

ρµ(A) =

∑
i,j∈I piPij∑

i∈I pi
(2.30)

So we want to maximize the quantity ρµ =
∑k

i=1 ρµ(Ai) while ensuring that each of µ(Ai) > s,

where s is the minimum permissible measure of any set in the partition and 0 < s < 1/k. We

make an observation that in general the Markov chain given by operator P is not reversible,

i.e., in general piPij 6= pjPji. To use certain theorems from the theory of Markov chains,

we need to form a reversible matrix, that will have a real eigen-spectrum. So we form a

reversible matrix

R = (P + P̂ )/2, (2.31)

where P̂ is the time-reversed analogue of P with its elements are given by

P̂ij =
pjPji

pi
(2.32)
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We note the fact that the first eigenvector of R is still p, and also that the quantity ρµ to

be maximized remains unchanged if we replace Pij by Rij in the expression. We assume

that the eigenvalues are numbered such that λ1 ≥ λ2 ≥ λ3 and so on. Recall that Rayleigh’s

principle [12] states that the jth eigenvalue λj for 1 ≤ j ≤ n is given by the variational

formula

λj = max{〈Rw,w〉|w ∈ L2(µ), ‖w‖2 = 1, w⊥v1, v2, ...., vj−1} (2.33)

where orthogonality is implied with respect to the L2(µ) inner product, and vi is the ith

eigenvector of R. We note the following theorem about the properties of a self-adjoint

operator (like R).

Theorem 4. Let R : L2(µ) → L2(µ) be a self adjoint operator. Then the following equality

holds [13]

λk + λk−1 + .... + λ1 = max

{
k∑

i=1

〈Rφi, φi〉|(φ1, ...., φn) is an orthonormal system

}
(2.34)

We apply the above theorem to the discretized operator R as defined in 2.31, operating on

the finite-dimensional space. Let 1A be the characteristic vector of any set A, i.e., it is a

n-vector defined over X with ith entry equal to 1 if Bi ∈ A and equal to 0 otherwise. We

can rewrite the expression for ρµ(A) as

< R1A, 1A >

< 1A, 1A >
(2.35)

Let Xj be the normalised characteristic vector of set Aj, i.e.,

Xj =
1Aj

< 1Aj
, 1Aj

>
(2.36)

It is easy to see that the Xj’s form an orthonormal system given a partition {A1, A2, ...., Ak}.
The following result, which given an upper bound on the quantity ρµ is an immediate con-

sequence.

ρµ = ρµ(A1) + ρµ(A2) + ....+ ρµ(Ak) ≤ 1 + λ2 + λ3 + .... + λk (2.37)
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A lower bound on ρµ can also be derived using the above mentioned properties of R, and we

get the following expression,

ρµ > 1 + r2λ2 + r3λ3 + .... + rkλk + c, (2.38)

where Q is the projection on the subspace spanned by Xjs,

rj = ‖Qvj‖2 = 〈Qvj , Qvj〉 ∈ [0, 1] (2.39)

and

c = a(1− r2 + 1− r3 + ...+ 1− rk) (2.40)

Here a > −1 is the infimum of the real-spectrum of the operator R. While the problem

of finding an optimal partition is an ill-posed one [14], the above bounds have motivated

the development of a number of heuristic methods in recent years. We describe the method

followed in this dissertation below.

Two almost invariant sets: We will use the second eigenvector v2 of R to form a partition

{A1, A2} of the phase space X such that both the objectives mentioned above are satisfied.

It is clear that since v2 is orthogonal to the vector v1 = p (which is positive everywhere

because it is an invariant measure of the system), it has both positive and negative entries.

The lower bound of the above theorem suggests that the closer v2 is to being a constant

function on different components of the partition, the closer the lower bound will be to the

upper bound, and hence the resulting value of ρµ will be higher. Hence a natural partition

that one arrives at is to use the zero-contour of v2 as the boundary between A1 and A2. This

division also ensures that the two components of the partition have almost equal measure.

Hence, it follows that if I1 = {i|(v2)i > 0, 1 ≤ i ≤ n} and I2 = {i|(v2)i < 0, 1 ≤ i ≤ n}, then
A1 = ∪i∈I1Bi and A2 = ∪i∈I2Bi.

A modified heuristic is to use a value c close to 0 as the boundary between A1 and A2.

Usually [14], a search through various values of c is done by calculating ρµ for different

resulting partitions, and the one will the highest value of ρµ is selected. That is, if I1 =
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{i|(v2)i > c, 1 ≤ i ≤ n} and I2 = {i|(v2)i < c, 1 ≤ i ≤ n}, then A1 = ∪i∈I1Bi and

A2 = ∪i∈I2Bi.
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2.3 Topological Methods

2.3.1 Important concepts and definitions

The term advection refers to transport of material by a fluid flow in which the velocity of a

material particle equals the velocity of the underlying velocity field, i.e., if the velocity field

of the fluid is given by v(x, t), then the particle obeys

ẋ = v(x, t), (2.41)

and this is called the advection equation. When the advection equations are non-integrable,

the particle trajectories are also chaotic and this phenomenon is called chaotic advec-

tion [15]. This concept is a very important tool for analyzing and obtaining mixing en-

hancements in laminar flows. There are a number of ways to measure the amount of mixing

in such fluid flows and topological entropy is one of the most important one.

For any discrete dynamical system, the topological entropy h, of a system is a quantitative

measure of its orbit complexity [11]. It is a purely topological quantity, and does not depend

on any underlying measure of the system, i.e., it treats all orbits of the system as equal. Let

N (n, ǫ) be the number of different orbits of length n of a given discrete dynamical system,

if the least measurable distance is ǫ, i.e., two nearby points are considered distinct if they

are more than ǫ apart. This quantity is called the maximum cardinality N(n, ǫ) of a (n, ǫ)

separated set. Then, the topological entropy of the map f is formally defined by

h(f) = lim
ǫ→0

(
lim
n→∞

sup

(
1

n
logN (n, ǫ)

))
(2.42)

Hence, the topological entropy is the exponential rate of increase in the number of such orbits

in the asymptotic limit n→ ∞ and ǫ→ 0.

In case of two-dimensional smooth flows, an appropriate Poincare map is first computed.

The line-stretching exponent for this map, which is the maximum stretching over all possible

initial material lines is equal to the topological entropy of the flow [16]. For instance, the
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actual topological entropy of a two-dimensional bounded flow with stirrers inserted can be

determined by computing the stretching rate of topologically nontrivial lines, such as loops

that encircle exactly two of the stirring rods or lines that join a stirring rod with the outer

boundary [17].

2.3.2 Topological chaos and the Thurston-Nielsen

classification theorem

Topological chaos in the context of fluid mechanics refers to the complexity in the system

that is “built in” to the flow due to the topology of boundary motions, which cannot be

removed by continuous perturbation of the fluid while keeping the boundaries fixed. This

implies that unless there is a change in topology of the boundary motions, there is a minimum

guaranteed amount of complexity that will always be present in the flow.

Consider a N -punctured fluid domain in two dimensions (i.e., a two-dimensional domain

with the regions bounded by N curves homeomorphic to a circle removed from it) and de-

note it by RN . Let the punctures undergo a prescribed cyclic motion, and then return to

their initial position at end of the cycle. By the continuity and smoothness assumption, the

punctures have dragged the fluid along with them. Assume the flow is periodic with period

T , and denote by f the time T -map of the fluid flow over RN . Since f represents a physical,

differentiable fluid flow motion, it is by definition an orientation preserving diffeomorphism,

and contains all the information about the fluid flow. The Thurston-Nielsen (TN) classifi-

cation theorem [17] provides a way to obtain important topological properties of f without

actually solving for it (either analytically or numerically). Two diffeomorphisms are said

to be isotopic if they can be continuously deformed into each other. Hence, the isotopy

class of f is the set of all diffeomorphisms isotopic to f . Hence, each such isotopy class can

be represented by just one member belonging to that class, called the representative. This

theorem guarantees that there exists a representative f ′ (called the Thurston-Nielsen repre-

sentative) in the isoptopy class of f , that belongs to one of the following three categories,
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1) Finite-order : If f ′n is isotopic to the identity for some positive integer n.

2) Pseudo-Anosov (pA): f ′ stretches fluid elements by a factor of λ > 1, so that repeated

applications give exponential stretching of material lines.

3) Reducible: f ′ leaves a family of curves invariant which delineate regions in the domain

that are of one of the two types described above (i.e., isotopic to identity or pA).

The theorem also states that the topological entropy of the TN-representative f ′ is a lower

bound on the topological entropy of f , i.e., the dynamics of f will be at least as complicated

as those of f ′.

2.3.3 Braiding in three-dimensional space-time, and computation

of topological entropy of pseudo-Anosov braids

In order to compute the topological entropy of the TN-representative in the pA case, a math-

ematical representation of f ′ acting on RN can be generated. The motion ofN -punctures can

be represented in space-time by N trajectories (xi(t), yi(t), t) for i = 1 to N , where xi(t), yi(t)

represent the position of ith puncture at time t. These N trajectories interchange positions

while moving around each other in three-dimensions (two of space and one of time), and

define a physical braid on N strands. Each braid consists of several “interchanges” between

2 trajectories (or strands) at a time. For example, 3 different types of interchange motions

are shown in figure 2.9.

Artin’s braid group [18] provides a mathematical framework to label and identify these

interchanges. Each such interchange is a generator for the overall braid. It is labeled as σi

if the ith and (i+1)th strands interchange their positions clockwise and it is labeled σ−1
i or

equivalently σ−i if the same interchange happens anti-clockwise. Note that the index i here

refers to the current position of a strand obtained by projecting the positions on x-axis and

counting from the left, and hence it does not always refer to same strand.

The interchange protocols shown in figure 2.9 R+, L+ and L− are hence labeled as σ2, σ1
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(a) (b) (c)

1 2 3 1 2 3 1 2 3

Figure 2.9: Illustration of stirring motions. From left to right: R+ motion, L+ motion, L
−
motion

and σ−1 respectively. The braiding motion corresponding to any pA representative can be

written as product of various generators. By convention, a braiding sequence involving R+

followed by L− is written as σ−1σ2. In figure 2.10, we show the formal representation of

pseudo Anosov braid given by σ−1σ2, and a finite order braid by σ1σ2.

T
im

e

(a) (b)

Figure 2.10: (a) A pseudo Anosov braid σ
−1σ2 (b) A finite order braid σ1σ2.

The braid group on N strands can be represented in terms of (N − 1) × (N − 1) matrices,

called the Barau representation [19]. For N = 3, the topological entropy of the braid is can

be obtained by as follows. Each generator in the braiding sequence can be represented by

a 2 × 2 matrix. These matrices can be multiplied to arrive at the matrix representation
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M of the braid, which is the irreducible transition matrix for the Markov partition of a

two-dimensional pseudo-Anosov map. This pseudo-Anosov map is isotopic to the map f .

Hence, f will have at least as much complexity as this pA map, and this complexity can be

measured by calculating the eigenvalues of M . For example, in the braid considered above,

the two eigenvalues are λ = 1
2
(3 +

√
5) and 1

λ
= 1

2
(3 −

√
5). This implies that the pA map

stretches in the unstable direction (i.e., along the eigenvector corresponding to λ) by λ and

contracts in the stable direction (i.e., along the eigenvector corresponding to 1/λ) by factor

of 1
λ
. This behavior is preserved by isotopy and hence the map f will have motions that

produces stretching of at least λ. In case of N > 3, the leading eigenvalue does not give

the exact value of topological entropy of the braid, and hence a more powerful algorithm is

used to obtain accurate values. The most commonly used method in this case, called the

Bestvina-Handel algorithm [20] has a freely available software implementation [21] called the

train-track code, that is used in this dissertation. The train-tracks algorithm computes the

graph of the movement of edges between rods that are undergoing braid operations. The

algorithm determines the least amount of stretching that an elastic band connected to rods

will undergo during the motion, which is equivalent to the stretching of material lines [22].

More detailed discussion of application of Thurston Nielsen classification theorem in the

context of chaotic advection can be found in [17].
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Chapter 3

Design Of Fuel Efficient Trajectories

In A Planet-Moon Environment

3.1 Introduction

Low energy spacecraft trajectories such as multi-moon orbiters for the Jupiter system can be

obtained by harnessing multiple gravity assists by moons in conjunction with ballistic capture

to drastically decrease fuel usage [23, 24, 25]. These phenomena have been explained by

applying techniques from dynamical systems theory to systems of n bodies considered three

at a time [26, 27, 28, 29, 30]. One can design trajectories with a predetermined future and

past, in terms of transfer from one Hill’s region to another. Using this approach, which has

been dubbed the “Multi-Moon Orbiter” (MMO) [23], a scientific spacecraft can orbit several

moons for any desired duration, instead of flybys lasting only seconds. This approach should

work well with existing techniques, enhancing interplanetary trajectory design capabilities

for missions in planet-moon environments. The approach is quite flexible in the sense that

the spacecraft can be made to respond to unforeseen events, and can be made to revisit any

region using little fuel.
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The aim of this chapter is to describe a methodology using the analytically derived Keple-

rian map [1] to obtain trajectories with a realistic time-of-flight (i.e., measured in months

instead of years in case of uncontrolled trajectories), using small control inputs in the form

of instantaneous ∆V s.

We describe briefly the PCR3BP in section 3.2, and mention important results from the

literature. The Keplerian map, which is the analytical tool used in the process of finding

desired trajectories is described in the next section. Next, we derive an exact periapse map

via Hamilton-Jacobi theory. We then review the framework of breaking down the multi-

moon trajectory design problem into two 3-body problems and describe a method of finding

zero-fuel trajectories that go from one moon to the other using the Keplerian map. Using

this framework, we then describe the methodology for generating low energy trajectories

that can be completed in reasonable time using small control inputs. We also discuss the

tradeoff between fuel consumption and time-of-flight for the family of trajectories obtained

using this method.

3.2 Planar circular restricted three body problem

(PCR3BP)

In this section, we give a very brief overview of the PCR3BP. An excellent reference for this

section is [31].

3.2.1 Basic set-up and equations of motion

Consider the motion of a particle P of negligible mass moving under the gravitational influ-

ence of two masses m1 and m2, referred to as the primaries. We assume that m1 and m2

have circular orbits about their common center of mass. The particle P is free to move in

the plane defined by the circular orbits of the primaries, but cannot affect their motion. In
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the context of this chapter, it is helpful to imagine that m1 represents the planet and m2

represents a moon, and we analyze the motion of P , a spacecraft of comparatively negligible

mass, such that it does not affect the motion of m1 and m2.

We non-dimensionalize the system by taking the units as follows: one unit of mass is equal to

m1 + m2; one unit of length equals the fixed distance between m1 and m2 (i.e., the distance

between the centers of the planet and moon); one unit of time is chosento make the orbital

period of m1 and m2 about their center of mass equal to 2π. This choice of units results

in universal constant of gravitation becoming unity (i.e., G = 1). The only parameter of

the system is the mass parameter, µ =
m2

m1 +m2

. This parameter µ is a measure of the

amount of perturbation to the 2-body problem consisting of the planet and spacecraft P .

Define µ1 = 1 − µ and µ2 = µ. Here r1 =
√

(x+ µ2)2 + y2 and r2 =
√
(x− µ1)2 + y2 are

the distances to P from m1 and m2, respectively.

P
(x,y)

x

y

m1 m2

(−µ, 0) (1− µ, 0)

Figure 3.1: Rotating coordinate system and position of the various masses in PCR3BP.

The Langrangian L of the system in the rotating frame (shown in figure 3.1) moving with

the planet-moon system is

L(x, y, ẋ, ẏ) =
1

2
((ẋ− y)2 + (ẏ + x)2)− U(x, y) (3.1)

where U(x, y) is the gravitational potential given by

U(x, y) = −µ1

r1
− µ2

r2
− 1

2
µ1µ2 (3.2)
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We define the augmented potential Ũ(x, y) as

Ũ(x, y) = −1

2
(x2 + y2) + U(x, y) (3.3)

where the extra term −1
2
(x2 + y2) is the centrifugal potential, arising from the fact that the

equations are written in the rotating frame. The equations of motion of P in the rotating

frame are

ẍ− 2ẏ = −Ũx,

ÿ + 2ẋ = −Ũy

The Hamiltonian form of above equations is more useful for our analysis. The Legendre

transformation transforms a system of equations given in Lagrangian formulation into the

Hamiltonian formulation. For a general Lagrangian L(q, q̇), where q = (q1, q2, ....) and

q̇ = (q̇1, q̇2, ....) , we define momenta as pi =
∂L

∂qi
. Each q̇i can be expressed as q̇i(q,p) and

then the Hamiltonian of the system can be defined as H(p,q) =
∑

i

q̇ipi − L(q, q̇).

Using the Legendre transformation for our system, we get the following system of equations

ẋ =
∂H

∂px
= px + y

ẏ =
∂H

∂py
= py − x

ṗx = −∂H
∂x

= py − x− Ũx

ṗy = −∂H
∂y

= −px − y − Ũy

Where the Hamiltonian H(x, y, px, py) is

H(x, y, px, py) =
1

2
((px + y)2 + (py − x)2) + Ũ(x, y) (3.4)

And px, py are the conjugate momenta to x and y, respectively

px = ẋ− y (3.5)

py = ẏ + x (3.6)
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We can also express the energy of the system in terms of (x, y, ẋ, ẏ) as

E(x, y, ẋ, ẏ) =
1

2
(ẋ2 + ẏ2) + Ũ(x, y) (3.7)

Traditionally, the Jacobi integral C(x, y, ẋ, ẏ) (=−2H(x, y, px, py)) has been used in celestial

mechanics community.

Osculating orbital elements and Hamiltonian equations

In celestial mechanics, a set of elements called the ‘osculating’ orbital elements is often

used. These elements represent an instantaneous approximation of the motion of body as

a (elliptical) Keplerian orbit in presence of a perturber. r is the distance from m1 to P , a

denotes the semi-major axis of the osculating ellipse, e is the eccentricity, ω is the angle of

periapse of the ellipse measured from the inertial X axis, while ω̄ represents the periapse

angle measured in the rotating frame. ν is the true anomaly and θ is the angle formed

between the rotating x axis and the vector to the particle P from m1. Figure 3.2 explains

the various orbital elements in case of a massive central body m1 and a perturber m2. The

time-independent Hamiltonian for the PCR3BP in the rotating frame can be expressed in

these osculating elements up to first order in µ as follows:

H(a, e, ω̄, ν) = H0 + µHp (3.8)

where

H0 = − 1

2a
−G (3.9)

Hp =
1

r
+
cos(θ)

r2
− 1√

r2 + 1− 2rcos(θ)
(3.10)

r =
a(1− e2)

1 + ecos(v)
(3.11)

θ = ω̄ + v = ω − t+ v; (3.12)

Here G =
√
a(1− e2) is the angular momentum of the particle P . Denote by r2 the distance

between m2 and the particle P , then r2 =
1√

r2 + 1− 2rcos(θ)
.
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3.2.2 Geometrical structure

Understanding the geometrical structure of the invariant manifolds of various fixed points of

PCR3BP in the planet-moon environment gives deep insight into the phase space transport

occurring in the this problem. The effective potential Ũ(x, y) is plotted in figure 3.3 for

µ = 0.3. Also shown are the five Lagrange points (L1 through L5), which are fixed points in

the rotating reference frame.

For fixed value of energy e, the dynamics in PCR3BP are restricted to a three dimensional

manifold (in the four-dimensional phase space), given by

M = [(x, y, ẋ, ẏ) : E(x, y, ẋ, ẏ) = e] (3.13)

The projection of this surface on the position space is given by

M = [(x, y) : Ũ(x, y) < e], (3.14)

P

m2

m1 X

Y

x

ω̄

ω

y

r ν

t

Periapsis

Apoapsis
a

Apsidal line

ae

Figure 3.2: Various osculating orbital elements are shown in this figure, representing the instantaneous

approximation of the motion of the body P as a Keplerian orbit around the massive body m1. X-Y axes

represent the inertial frame, while x-y axes represent the frame which rotates with the perturber m2.
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The boundaries of this projected surface, known as zero velocity curves delineate the regions

in phase space in which the motion is allowed for that particular energy value. This results

in five qualitatively different cases, depending on value of e, and are shown in figure 3.4. We

denote by Ei the energy associated with the fixed point Li, i = 1, 2, 3, 4, 5. The five cases

are as follows:

• Case 1: e < E1. The particle cannot move from the realm around m1 to the realm

around m2 or vice-versa. Also, it cannot go from exterior realm to either of the interior

realms or vice-versa.

• Case 2: E1 < e < E2. The particle can move between realms around m1 and m2, but

cannot go from interior to exterior realms or vice-versa.

• Case 3: E2 < e < E3. In addition to moving between realms around m1 and m2, the

particle can now travel between exterior and interior realms via the neck around L2.

• Case 4: E3 < e < E4 = E5. In this energy case, the particle near m1 can travel to

exterior realms directly via the neck around L3, in addition to the motion possible in

case 3.

• Case 5: E4 < e. There is no forbidden region in this case, and the particle is free to

travel to any region in x-y plane.
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Figure 3.3: Effective potential Ũ(x, y) for µ = 0.3. The five critical points of this potential, L1 through

L5, which are the fixed points of the PCR3BP in the rotating frame, are also shown.
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P

m1
m2

(a) Case 1: e < E1

m1
m2

P

(b) Case 2:E1 < e < E2

m1
m2

P

(c) Case 3:E2 < e < E3

P

m1
m2

(d) Case 4:E3 < e < E4

P

m1
m2

(e) Case 5:E4 < e

Figure 3.4: The zero velocity curves, and the division in x-y plane by these curves is shown for µ = 0.3.

Depending upon the value of energy e of the particle P , this division results in five different scenarios. The

particle can move in the white region, while the grey region is forbidden i.e., inaccessible at that particular

level of energy.
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Dynamics near the Lagrange points L1 and L2

Analysis of the linearized dynamics near L1 and L2 can surprisingly reveal a lot of information

about the global (inter-realm) transport in the PCR3BP. The key result here is that the stable

and unstable cylindrical manifolds (i.e., S1×ℜ1 geometry) of the periodic orbits around these

two fixed points (called the Lyapunov orbits) separate two distinct types of motion: transit

orbits and non-transit orbits. The transit orbits, passing from one realm to another, are

those inside the cylindrical manifold, or tube. The non-transit orbits, which bounce back

to their realm of origin, are those outside the tube. In figure 3.5, we show those tubes

(i.e., invariant manifolds of unstable periodic orbit around L2) mediating transport between

exterior realm and moon realm. The main computations involved in obtaining phase space

structure in PCR3BP are as follows

• Find the fixed points L1 and L2 using the Hamiltonian equations of motion in the

rotating frame.

• Linearize the system dynamics around each of those two fixed points and find the

eigenvalue/vectors of the Jacobian at the fixed points. Since the fixed points have the

saddle × center geometry, the eigen-spectrum consists of a purely imaginary complex

conjugate pair, and a pair of real eigenvalues with opposite signs.

• To better understand the geometry of flow around in the equilibrium region, perform

a change in coordinates by taking the new axes in the four dimensional phase space to

lie along the eigenvectors of the Jacobian.

• Invariant manifolds of the periodic orbits around the two fixed points are then revealed

to be the envelopes that enable transport between the different realms in the PCR3BP.

The reader is referred to [28] for an extensive treatment of this topic.
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Ballistic 
Capture and  

Escape

 Jovian Moon 

L2

C

Jupiter 
L2  

orbit 

Jovian
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Figure 3.5: Tube dynamics near L2: The particle P1 which starts out in a manifold tube of the exterior

Lagrange point L2 is ballistically captured into an unstable elliptical orbit around the moon and may soon

impact with the moon. Another particle P2, with a velocity slightly above escape velocity, escapes from the

moon region via the neck region, again by passing through the tubes. This figure is a modified version of the

figure 6.2 in [1].
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3.3 Keplerian Map for evolution under natural dynam-

ics of PCR3BP

We use a family of two-dimensional symplectic twist maps to approximate a particles motion

in the planar circular restricted three-body problem with Jacobi constant near 3. The maps

model a particle on a near-Keplerian orbit about a central body of unit mass, where the

spacecraft is perturbed by a smaller body of mass µ. Each map, which we call the Keplerian

map, is an update map for the angle of periapse ω in the rotating frame and Keplerian energy

K (which equals − 1

2a
), (ωn, Kn) 7→ (ωn+1, Kn+1). The map has the form


 ωn+1

Kn+1


 =


 ωn − 2π(−2(Kn + µf(ωn;CJ , K̄)))−3/2

Kn + µf(ωn;CJ , K̄)


 (3.15)

i.e., a map of the cylinder A = S1×R onto itself. This two-dimensional symplectic twist map

is an approximation of a Poincaré map of the planar circular restricted three-body problem

(PCR3BP), where the surface of section is at periapsis in the space of orbital elements. For

this reason, eq. (3.15) could be considered a periapse map.

3.3.1 Derivation

We describe the main steps in the derivation of this map in this section. This map was first

derived in [1] and we follow that derivation closely. Recall again that the Hamiltonian of the

PCR3BP in the rotating frame is given by

H(a, e, ω̄, ν) = H0 + µHp (3.16)
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where

H0 = − 1

2a
−G (3.17)

Hp =
1

r
+
cos(θ)

r2
− 1√

r2 + 1− 2rcos(θ)
(3.18)

r =
a(1 − e2)

1 + ecos(ν)
(3.19)

θ = ω̄ + ν = ω − t+ ν (3.20)

G =
√
a(1− e2) (3.21)

r2 =
1√

r2 + 1− 2rcos(θ)
(3.22)

The main steps in the derivation are

• Integrate the perturbations on the spacecraft P due to the small perturber m2, assum-

ing that the spacecraft is on an elliptical Keplerian orbit around the massive body m1,

and find the change in angular momentum (∆G) over one complete orbit.

• Use the invariance of Jacobi constant to arrive at the functional dependence of ∆K on

ω and K, by relating ∆G and the change in Keplerian energy i.e., ∆K.

• Approximate the change in ω, i.e., ∆w as a function of K and ω.

• Compute the ∆K values for a fixed value of K, which makes the map area-preserving,

a property of the map computed numerically from the full PCR3BP equations.

We begin the derivation by noting that using the canonical form of the Lagrange planetary

equations [32], the change in angular momentum G can be written in differential form as

dG

dt
= −µ∂Hp

∂ω
(3.23)

For this perturbing function, we have

Hp = − 1√
1 + r2 − 2 r cos(ω − t + ν)

+
cos(ω − t+ ν)

r2
+

1

r
(3.24)
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Hence the R.H.S of (3.23) can be calculated using

∂Hp

∂ω
=

r

r32
sin(ω + ν − t)− 1

r2
sin(ω + ν − t). (3.25)

We use the above expression along with (3.23) to calculate the change in G over one complete

orbit of the spacecraft. Equation (3.23) is treated as a differential equation w.r.t time. The

expression can be integrated for a fixed value of ω over a complete orbit i.e., from apoapse

to apoapse. We employ a change in variables, and use the true anomaly ν as the integrating

variable. The relation between true anomaly ν and time can be obtained via Kepler’s

equation i.e., by noting that

l = 2π(t/T ) (3.26)

l = λ− e sinλ (3.27)

tan(ν/2) =

√
1 + e

1− e
tan (λ/2) (3.28)

where λ is known as the eccentric anomaly and l is the mean anomaly. The time period of

an unperturbed Keplerian orbit is T = 2πa3/2. The distance r can be expressed in terms

of the true anomaly as r =
a(1− e2)

1 + e cos ν
. Using the above information, we can carry out the

integration as follows

∆G = −µ
∫ T/2

−T/2

∂Hp

∂ω
dt

= −µ
∫ T/2

−T/2

[
r

r32
sin(ω + ν(t)− t)− 1

r2
sin(ω + ν(t)− t)

]
dt

= − µ

G

∫ π

−π

[(
r

r2

)3

sin(ω + ν − t(ν))− sin(ω + ν − t(ν))

]
dν

= − µ

G

[(∫ π

−π

(
r

r2

)3

sin(ω + ν − t(ν)) dν

)
− sinω

(
2

∫ π

0

cos(ν − t(ν)) dν

)]
. (3.29)

where the integration is carried from apoapse to apoapse.

Next, we note that by the invariance of the Jacobi constant we have ∆H = 0 in the rotating
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frame and therefore using 3.16 (note K = − 1

2a
)

∆H = ∆K −∆G+ µ∆Hp = 0 (3.30)

∆K = ∆G− µ∆Hp, (3.31)

where

∆Hp = Hp(ν = π)−Hp(ν = −π),

=
1√

1 +Q2 + 2 Q cos(ω + τ)
− 1√

1 +Q2 + 2 Q cos(ω − τ)
+

2

Q2
sinω sin τ

with Q = a(1 + e) and τ = πa3/2, the apoapsis distance and half period of the unperturbed

orbit, respectively.

∆K is a function of ω, K, and e but the invariance of the Jacobi constant yields a relationship

between these three variables, implying ∆K = ∆KCJ
(ω,K), where CJ is a parameter. The

expression (3.31) can be written as ∆KCJ
= µf(ω,K), where f is the energy kick function.

We can approximate the energy kick ∆KCJ
between consecutive apoapsis passages as a

discrete event occurring at periapsis passage, and assume that the particle moves in an

unperturbed orbit for all times except at each periapse, where it receives the kick that

changes its Keplerian energy (and hence it shifts to another Keplerian orbit). For values of

K and CJ that we are concerned with, the maximum contribution of µ∆Hp is much smaller

than that of ∆G, so we ignore it, i.e., we assume that µ∆Hp ≪ ∆G and

f(ω,K) = ∆KCJ
(ω,K)/µ = ∆G/µ, (3.32)

Note that we want to derive a periapse map that gives us the evolution of an initial condition

(at peripapse) on a given PCR3BP energy surface (defined by the pair (µ, CJ)). For our

trajectory design purposes, typical values of parameters imply µ ≪ 1 and CJ ≈ 3, which is

close to the Jacobi constant of L2. Our aim is to compute the sequence of pairs (ωn, Kn),

n = 1, 2, 3, ... which result from an initial condition (ω0, K0). We assume t = 0 at time of

periapse. This implies ω = ω̄ at the periapse (i.e. when the kick is assumed to take place)
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and hence we have dropped the bar and will now use only ω. The (ωn, Kn) pairs represent

the angle of periapse in the rotating frame of the PCR3BP and the Keplerian energy of

the instantaneous Keplerian orbit of the particle. We have already described the process to

compute the change in K, by deriving the kick assumed to be received by the spacecraft

at each periaspe. In our approximation, (ωn, Kn) represents the particle’s orbit just before

receiving an energy kick. Immediately following the kick, the orbit becomes (ωn+1, Kn+1).

The time until the next periapsis passage is ∆t = 2πa
3/2
n+1 = 2π(−2Kn+1)

−3/2. The change

in the periapsis angle ω during this period is ∆ω = 2π −∆t. Since the variable ω is defined

mod 2π, therefore ∆ω = −∆t mod 2π.

We have neglected the direct effect of the gravity interaction on the argument of periapsis,

and the only change in ω is due to the instantaneous change in Keplerian energy, which in

turn changes the time period of the Keplerian orbit, and hence, has an effect of changing the

relative phase of the instantaneous ellipse w.r.t the rotating coordinate system. We obtain

a two-dimensional update map at periapse for the four-dimensional PCR3BP (restricted to

an energy manifold)

(ωn+1, Kn+1) = F (ωn, Kn) of the cylinder A = S1 ×ℜ onto itself, i.e., F : A → A where

F


 ωn

Kn


 =


 ωn+1

Kn+1


 =


 ωn − 2π(−2Kn+1)

−3/2 (mod 2π)

Kn + µf(ωn, Kn)


 . (3.33)

We find the Jacobian determinant of F to be 1+µ ∂f
∂K

. The map is clearly not area-preserving

for a general K dependence of the kick-function f . But if we assume f is independent of

K then we have a symplectic (area-preserving) twist map, which is a a property of the

Periapse map computed numerically by integration of PCR3BP equations. This assumption

also leads to simplification of analysis involved in computing controlled trajectories. It is

also a desirable property for maps in general [5, 33]. Hence, we take a reference value of

K = K̄, and let f(ω) = f(ω, K̄) and thereby make F area-preserving:

F


 ωn

Kn


 =


 ωn+1

Kn+1


 =


 ωn − 2π(−2Kn+1)

−3/2 (mod 2π)

Kn + µf(ωn)


 . (3.34)
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We can calculate the twist of this map

∂ωn+1

∂Kn

∣∣∣∣
ωn

= 3π (−2(Kn + µf(ωn))
−5/2 > 0, (3.35)

for Kn < −µf(ωn). The twist is to the right, which means that the Keplerian energy K acts

like velocity for the ω coordinate i.e., higher the value of K, bigger is the change in ω over

one iteration.

We compute the value of the integral numerically by quadrature, assuming an average value

ofK (called K̄) over the region where the map is being used. Due to the form of the integrals,

the resulting function f(ω) is odd in ω. For our purposes, we use a discretization over ω for

a reference value of K̄, and store the value of f for each of the ω values. f for a general

value of ω is then calculated by interpolation.

3.3.2 Properties of the Keplerian map

The map captures well the dynamics of the full equations of motion; namely, the phase space,

shown in figure 3.6(b), is densely covered by chains of stable resonant islands, in between

which is a connected chaotic zone. The more physically intuitive semimajor axis a is plotted

for the vertical axis instead of Keplerian energy K, where a = −1/(2K). The kick function

obtained from the map shows that the biggest kicks are recieved for a very narrow range of

periapse angle values. If the periapse occurs slightly ahead of the perturber, the spacecraft

gets a negative a kick, and if the periapse is slightly behind the perturber, the kick is positive.

In figure 3.6(a), these regions are labelled A− and A+ respectively.

Using similar methods as above, we can construct an apoapse map for the case when the

spacecraft is in the interior realm of the CR3BP, i.e., when its apoapse distance is less than

the circular orbit of the perturber. In case of an apoapse map, to recieve the positive a

kick, the apoapse needs to be slightly ahead of the perturber (or the periapse needs to be

slightly less than π). Similarly, for a negative a kick, the apoapse needs to be slightly behind

the perturber (or the periapse needs to be slightly more than −π). Both the periapse and
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Figure 3.6: (a) The energy kick function f vs. ω for a typical set of values of the parameters, with the

regions of high increase (A+) and high decrease (A
−
) on the ω axis. (b) The connected chaotic sea and

the elliptical islands of the Keplerian map. The semimajor axis a vs. the angle of periapsis ω is shown

for parameters µ = 5.667 × 10−5, CJ = 2.995, ā = −1/(2K̄) = 1.35 appropriate for a spacecraft in the

Jupiter-Callisto system. Several initial conditions were taken randomly in the phase space, and then iterated

for a total of ≈ 15000 times.

apoapse maps will be referred to as Keplerian maps, and context should reveal which is being

used.

The engineering application envisioned for the map is to the design of low energy trajectories,

specifically between moons in the Jupiter moon system. Multiple gravity assists are a key

physical mechanism which could be exploited in future scientific missions [23]. For example,

in [1], a trajectory sent from Earth to the Jovian system, just grazing the orbit of the

outermost icy moon Callisto, can migrate using little or no fuel from orbits with large

apoapses to smaller ones was described. This is shown in figures 3.7(a) & (b) in both the

phase space and the inertial configuration space. Also, it was shown in [1] that from orbits
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Figure 3.7: This figure shows a trajectory hopping the various resonances which results in rapid decrease

in semi-major axis. Top: The trajectory is shown in phase space. The initial point is marked with a triangle,

and the final point is marked with a rectangle. Bottom: The trajectory is projected onto the configuration

space in an inertial frame. Jupiter and Callisto are shown at their initial positions, and Callisto’s orbit is

dashed. Note that the periapsis direction remains almost contant during the migration from higher to lower

values of semi-major axis takes place. This phenomenon is further explained in section 3.5. This figure has

been taken from [1].
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slightly larger than Callisto’s, the spacecraft can be captured into an orbit around the moon.

The set of all capture orbits is a solid cylindrical tube in the phase space, as shown in

figure 3.8(a). Followed backward in time this solid tube intersects transversally the Poincaré

surface-of-section on which the Keplerian map is defined. The resulting elliptical region,

figure 3.8(b), is an exit from jovicentric orbits exterior to Callisto. It is the first backward

Poincaré cut of the solid tube of capture orbits.
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(a)

(b)

Figure 3.8: (a) A trajectory of spacecraft P is shown in the configuration space. The spacecraft starts

out in the tube whose boundary is the stable invariant manifold of a periodic orbit around L2. The tube

projected onto the configuration space is also shown. We also show the final intersection of the tube with

Σe, a Poincaré map at periapsis in the exterior realm. (b) The numerically computed location of the same

exit on Σe, along with the rest of the structure on the phase space of the map. The Spacecraft which reaches

the exit will subsequently enter the phase space realm around the perturbing moon. This figure has been

taken from [1].
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The advantage of considering an analytical two-dimensional map as opposed to full numerical

integration of the restricted three-body equations of motion is that we can apply all the

theoretical and computational machinery applicable to phase space transport in symplectic

twist maps [5]. For example, previous work on twist maps can be applied, revealing the

existence of lanes of fast migration between orbits of different semimajor axes. These lanes

can be used by a spacecraft sent from Earth to the Jovian system. A spacecraft whose

trajectory just grazes the orbit of the outermost icy moon Callisto can migrate using little

or no fuel from orbits with large apoapses to smaller ones.

This Keplerian map is an approximate update map for the planar CR3BP; the approximation

arises from fact that the kick function f is obtained by evaluating integrals while assuming

an average value of K, i.e., K̄. An exact map can be obtained, but adds complication. A

first attempt to derive an exact map was made by using the actual value K instead of an

average value, and mimicking the original procedure, i.e., integrating the perturbation terms

over an unperturbed orbit. But this resulted in additional derivative terms, and the resulting

map did not turn out to be area-preserving, a key property of the Poincaré map resulting

from the full equations of motion which our map (3.34) has.

A second, more complicated way of deriving an exact map is to use the method of Hamilton-

Jacobi, which has been developed for general Hamiltonian systems in [34]. The exact map

derived this way, though interesting, does not have the simplicity we seek for mission design

purposes. This map is discussed next.

3.4 Exact periapse map via Hamilton-Jacobi theory

The derivation of an exact periapse map is described in this section. We generalize the

method described in [34] to two degree of freedom systems and apply it to the PCR3BP. This

method involves a canonical change of variables, leading to the elimination of perturbation

in the time interval between two consecutive intersections with the Poincaré section. This
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procedure transforms the perturbed system into an integrable one for the interval between

two periapses, and the evolution of transformed variables is then performed. The procedure

involves an inverse canonical change of variables at the end of the period. The change of

variables is given by generating functions which satisfy the Hamilton-Jacobi equations, and

can be solved to arbitrary orders of µ by perturbation theory for finite time intervals. An

exact map is derived below using this technique, but we do not get a simple analytical

expression for the map, as we do in eq. (3.34).

3.4.1 Review of Hamilton-Jacobi principle and action-angle vari-

ables

In a n-degree of freedom Hamiltonian system, let (q, p) be the canonical variables, where

(q, p) ∈ ℜn × ℜn, with H = H(q, p, t). The governing equations of motion are given by the

canonical Hamilton’s equations:

dq

dt
=
∂H

∂p
(3.36)

dp

dt
= −∂H

∂q
(3.37)

Consider a change of variables from (q, p) to (Q,P ), where Q = Q(q, p) and P = P (q, p),

with the new Hamiltonian being Ĥ(Q,P, t). If the transformation preserves the canonical

structure, the new equations of motion will be given by:

dQ

dt
=
∂Ĥ

∂P
(3.38)

dP

dt
= −∂Ĥ

∂Q
(3.39)

The generating function that we consider for our problem will of the form S = S(q, P ), i.e.,

its a function of the old coordinates and new momenta. The other variables can be obtained
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by the following relations:

p =
∂S(q, P, t)

∂q
(3.40)

Q =
∂S(q, P, t)

∂P
(3.41)

Since we want integrability during the interval, we put Ĥ = ˆH(P ) only. Clearly, we can see

that the evolution of transformed coordinates and momenta is given by :

Q = Q0 + Ω(P )(t− t0)

P = P0

(3.42)

where Ω =
∂Ĥ(P )

∂P
is the oscillation frequency in the transformed variables. The generating

function satisfies the Hamilton-Jacobi equation :

H

(
q,
∂S(q, P, t)

∂q
, t

)
+
∂S

∂t
= Ĥ(P ) (3.43)

Hence, the time evolution of system is completely determined by the generating function

S(q, P, t).

Two different ways of finding the periapse mapping are presented below. The first one is an

approximate map in the sense that will be made clear below, and the second one is ’exact’

up to order µ.

3.4.2 Method 1

We write the Hamiltonian for the PCR3BP in Delaunay variables as follows:

H(l, g, L,G) = H0(L,G) + µHp (3.44)

(3.45)
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where

H0 = − 1

2L2
−G (3.46)

Hp =
1

r
+
cos(θ)

r2
− 1√

r2 + 1− 2rcos(θ)
(3.47)

r =
a(1 − e2)

1 + ecos(ν)
(3.48)

θ = g + ν (3.49)

l =
√
(a) (3.50)

Note here we use g to denote the angle of periapse in the rotating frame, instead of ω̄

used earlier. This is done to be consistent with the literature on Hamilton-Jacobi related

computations involving the PCR3BP Delaunay variables.

Let the transformation be from (l, g, L,G) to (θl, θg, Jl, Jg). For an unperturbed system, i.e.,

µ = 0, we can clearly write the generating function as follows:

S0(l, g, Jl, Jg) = lJl + gJg −H0(Jl, Jg)t + Ĥ(Jl, Jg, t)t (3.51)

Note that the above generating function satisfies all the equations given in the previous

section. This suggests that for 0 < µ≪ 1,we can write the generating function as :

S(l, g, Jl, Jg, t) = S0(l, g, Jl, Jg) + µS1(l, g, Jl, Jg, t;µ); (3.52)

From the generating function, we can do the transformation for momenta at time step k, as

done in previous section:

Jk
l = Lk − µ

∂S1(l
k, gk, Jk

l , J
k
g , t

k)

∂l

Jk
g = Gk − µ

∂S1(l
k, gk, Jk

l , J
k
g , t

k)

∂g

(3.53)

Note that the above two equations are implicit in Jk
l and Jk

g . Once we get the transformed

momenta Jk
l , J

k
g , we know that these will be constant throughout the interval of interest. To
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get the actual momenta at the next time step, we write the equations similar to the above

two equations, but now at t = tk+1. So we get,

Lk+1 = Jk+1
l + µ

∂S1(l
k+1, gk+1, Jk

l , J
k
g , t

k+1)

∂l

Gk+1 = Jk+1
g + µ

∂S1(l
k+1, gk+1, Jk

l , J
k
g , t

k+1)

∂g

(3.54)

We observe that to solve the for Lk+1 and Gk+1, we need the original coordinates l and

g at t = tk+1. Again from the generating function, we write equation relating actual and

transformed coordinates:

θkl = lk + (Ωl(J
k
l , J

k
g )− wl(J

k
l , J

k
g ))t

k + µ
∂S1(l

k, gk, Jk
l , J

k
g , t

k)

∂Jk
l

(3.55)

θkg = gk + (Ωg(J
k
l , J

k
g )− wg(J

k
l , J

k
g ))t

k + µ
∂S1(l

k, gk, Jk
l , J

k
g , t

k)

∂Jk
g

(3.56)

θk+1
l = lk+1 + (Ωl(J

k
l , J

k
g )− wl(J

k
l , J

k
g ))t

k+1 + µ
∂S1(l

k+1, gk+1, Jk
l , J

k
g , t

k+1)

∂Jk
l

(3.57)

θk+1
g = gk+1 + (Ωg(J

k
l , J

k
g )− wg(J

k
l , J

k
g ))t

k+1 + µ
∂S1(l

k+1, gk+1, Jk
l , J

k
g , t

k+1)

∂Jk
g

(3.58)

Here, wl and wg are the frequencies of the unperturbed system in terms of transformed

momenta, given by
1

J3
l

and -1 respectively. The evolution of these transformed coordinates

is given by equations similar to equation (3.42), i.e., they are linear in time. The evolution

equations are as follows:

θk+1
l = θkl + (tk+1 − tk)Ωl(J

k
l , J

k
g ) (3.59)

θk+1
g = θkg + (tk+1 − tk)Ωg(J

k
l , J

k
g ) (3.60)

Substituting the above 2 eqns in the equtions (3.55) through (3.58) and re-arranging, we get

the following relations for the evolution of original coordinates:

lk+1 = lk + wl(t
k+1 − tk) + µ

∂S1(l
k, gk, Jk

l , J
k
g , t

k)

∂Jk
l

− µ
∂S1(l

k+1, gk+1, Jk
l , J

k
g , t

k+1)

∂Jk
l

gk+1 = gk + wg(t
k+1 − tk) + µ

∂S1(l
k, gk, Jk

l , J
k
g , t

k)

∂Jk
g

− µ
∂S1(l

k+1, gk+1, Jk
l , J

k
g , t

k+1)

∂Jk
g

(3.61)
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So the equations (3.53) , (3.54), and (3.61) are the three sets of coupled nonlinear equations

that describe the evolution of the system. The remaining task is to find the perturbed part

of the generating function , i.e., S1. To do so, we will follow the perturbation method. The

Hamilton-Jacobi equation for this system is as follows:

H0

(
∂S

∂l
,
∂S

∂g

)
+ µHp

(
l, g,

∂S

∂l
,
∂S

∂g
, t

)
+
∂S

∂t
= Ĥ(Jl, Jg) (3.62)

We write Ĥ(Jl, Jg) = Ĥ0(Jl, Jg) + µĤ1(Jl, Jg), and substitute R.H.S of equation (3.51) for

S in the above equation. Using Taylor series expansions, and comparing coefficients of µ on

both sides, we get the following :

∂S1(l, g, Jl, Jg, t)

∂t
+ wl

∂S1(l, g, Jl, Jg, t)

∂l
+ wg

∂S1(l, g, Jl, Jg, t)

∂g
= Ĥ1(Jl, Jg)−Hp(l, g, Jl, Jg)

(3.63)

Remark: We have used the fact that wl = ∂H0

∂Jl
and wg = ∂H0

∂Jg
. To integrate the above

equation, we observe that on an unperturbed orbit, the L.H.S reduces to the total derivative

of S1. The unperturbed orbit for l, g can be written as :

l(t) = l0 + wl(Jl, Jg)(t− t0) (3.64)

g(t) = g0 + wg(Jl, Jg)(t− t0) (3.65)

So the equation for S1 reduces to :

S1(l, g, Jg, Jt) = −Ĥ1(t− t0)−
∫ t

t0

H1(l(t
′), g(t′), Jg, Jl)dt

′ (3.66)

l(t′) = l + wl(Jl, Jg)(t− t′) (3.67)

g(t′) = l + wg(Jl, Jg)(t− t′) (3.68)

In the above equation, we need to choose the value of t0, lying between t
k and tk+1. Following

[34], we take it to be the mid-point of the two times. We also need to address the issue
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of not knowing the exact time of the next periapse. To use the above formulation as it

is, we assume that the time taken is given by ∆t = 2π/wl(Jl, Jg). Note that this is an

approximation, because it actually gives us the time that would be spent on an unperturbed

orbit (in transformed coordinates). To integrate, we use a change of variables, as follows:

l = l(t′) (3.69)

dt′ =
dl

wl(Jl, Jg)
(3.70)

g(l) = g(t′) +
wg(Jl, Jg)(l − l(t))

wl(Jg, Jl)
(3.71)

(3.72)

This results in the the following expression for S1

S1(l(t), g(t), Jg, Jt) = −Ĥ1(t− t0)−
∫ l(t)

l(t0)

H1(l, g(l), Jg, Jl)dl (3.73)

(3.74)

The above expression, can be integrated numerically, for t = tk and t = tk+1, putting

l(t0) = l(tk) + π and l(t0) = l(tk+1) − π, respectively. Note that the transformed momenta

are constant within the interval.

3.4.3 Method 2: Using the extended Hamiltonian formulation for

obtaining exact mapping

We derive an extended formulation for the system to avoid approximating the time of in-

tegration. We take time t as a system coordinate, which in the rotating frame turns out

to be a cyclic variable, with the conjugate momenta h being the negative of the original

Hamiltonian. We take the mean anomaly, l as the new independent variable instead, and

formulate the differential equations with respect to the new ‘time’. This will lead to an

exact formulation because we exactly know the values of this variable at each periapse, i.e.,

l = 2nπ. In this case, the negative of the conjugate momentum of l, will be the Hamiltonian,
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K. So, K = −L. The only extra step in this formulation is obtaining K, by inverting the

original equation for the Hamiltonian. We have :

K = −L (3.75)

K = K0(h,G) + µKp(t, l, g, h, G) (3.76)

− h = − 1

2L2
−G+ µHp(l, g, L,G) (3.77)

For µ = 0, we get:

− h +G = − 1

2L2
(3.78)

K0(h,G) = −
√

1

2(h−G)
(3.79)

We can numerically solve (3.77) for L. We get then:

Kp = (−K0)
3Hp(l, g, L(l, g, h, G), G) (3.80)

(3.81)

Once K is completely known, the problem is reduced to the same as the one discussed in

3.4.2. Here we have (g, t) as coordinates to be updated, and (G, h = −H) as the conjugate

momenta. K = K(g, t, G, h, l) becomes the new Hamiltonian, and l is the new ‘time’. Nu-

merical results confirm that this formulation is indeed ’exact’ and the kick function obtained

is virtually indistinguishable from that obtained from direct integration.

3.5 Fuel efficient (near zero fuel) trajectory design

3.5.1 Patched three body approximation

The ‘Patched three body approximation’ discussed by Ross et al. [23] considers the motion of

a spacecraft in the field of n bodies, considered two at a time, e.g., Jupiter and its ith moon,

Mi. When the trajectory of a spacecraft comes close to the orbit of Mi, the perturbation of
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the spacecraft’s motion away from purely Keplerian motion about Jupiter is dominated by

Mi. In this situation, we say that the spacecraft’s motion is well modeled by the Jupiter-Mi-

spacecraft restricted three-body problem. For each segment of purely three body motion, the

invariant manifold tubes of L1 and L2 bound orbits (including periodic orbits) lead toward

or away from temporary capture around a moon. The transport mechanism is associated

with the dynamics of homoclinic and heteroclinic tangles, and the study of this dynamics

leads to a general formulation of the transport in terms of distributions of small phase space

regions called ‘lobes’ [35]. Within the three-body problem, we can take advantage of phase

space structures such as these tubes of capture and escape, as well as lobes associated with

movement between orbital resonances. Both tubes and lobes, and the dynamics associated

with them, are important for the design of a MMO trajectory. Portions of these tubes

are “carried” by the lobes mediating movement between orbital resonances [28]. Directed

movement between orbital resonances is what allows a spacecraft to achieve large changes

in its orbit [23, 1]. When the spacecraft’s motion, as modeled in one three-body system,

reaches an orbit whereby it can switch to another three-body system, we switch or “patch”

the three-body model to the new system. This initial guess solution is then refined to obtain

a trajectory in a more accurate four-body model. Evidence suggests that these initial guesses

are very good [23], even in the full n-body model.

3.5.2 Using the patched three body approximation to design fuel

efficient trajectories

We describe a methodology to obtain fuel optimal trajectories for the MMO [2], [36] with

the help of the Keplerian map. During the inter-moon transfer—where one wants to leave

a moon and transfer to another moon, closer in to Jupiter—we consider the transfer in

two portions, shown schematically in figure 3.9, with M2 as the inner moon. In the first

portion, the transfer determination problem becomes one of finding an appropriate solution

of the Jupiter-M1-spacecraft problem which jumps between orbital resonances with M1, i.e.,
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performing resonant gravity assists to decrease the perijove [23]. M1’s perturbation is only

significant over a small portion of the spacecraft trajectory near apojove (A in figure 3.9(a)).

The effect ofM1 is to impart an impulse to the spacecraft, equivalent to a ∆V in the absence

of M1.

J J PA

S

S
M2

M1

(a) (b)

Figure 3.9: Inter-moon transfer via resonant gravity assists. (a) The circular orbits of two

moons/perturbers. Once the spacecraft exits the outer moon’s (M1’s) sphere-of-influence, it travels in an

perturbed (three-body) elliptical orbit about Jupiter. The spacecraft gets a gravity assist from the outer

moon when it passes through apojove (denoted A). Note that the several flybys have the same apojove

direction because the spacecraft orbit is in near-resonance with the outer moon’s orbital period and hence it

encounters the moon at about the same point in its orbit each time. Once the spacecraft orbit comes close to

grazing the orbit of the inner moon, M2, the inner moon becomes the dominant perturber. The spacecraft

orbit where this occurs is called the switching orbit and is denoted S. (b) The spacecraft now receives gravity

assists from M2 at perijove (P ), where the near-resonance condition also applies. The spacecraft is then

ballistically captured by M2.

The perijove is decreased until it has a value close to M2’s orbit, in fact, close to the orbit

of M2’s L2. We can then assume that a gravity assist can be achieved with M2 with an

appropriate geometry such that M2 becomes the dominant perturber (i.e., the effect of

M1 is now negligible as long as the spacecraft is not pushed towards M! again) and all

subsequent gravity assists will be with M2 only. When a particular resonance is reached,
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the spacecraft can then be ballistically captured by the inner moon [28]. The arc of the

spacecraft’s trajectory at which the spacecraft’s perturbation switches from being dominated

by moon M1 to being dominated by M2 is called the “switching orbit.” A rocket burn

maneuver need not be necessary to effect this switch. The set of possible switching orbits

is the “switching region” of the P3BA, see figure 3.10 . It is the analogue of the “sphere of

influence” concept used in the patched-conic approximation, which guides a mission designer

regarding when to switch the central body for the model of the spacecraft’s Keplerian motion.

A major difference is that the switching region is defined in the phase space and not just in

the configuration space.

Figure 3.10: Schematic trajectory in a-e plane showing various regions. Various apoapses/periapses are

starred. The straight lines represent the constant three body energy contours in J-G-S and J-E-S systems.

The task of searching for trajectories that go from near-Ganymede to near-Europa Jovicentric

orbits can be simplified using the Keplerian maps for the two three body systems. Given

the size of the periodic orbit around L1 of Jupiter-Ganymede-Spacecraft (J-G-S) system,

we can find its three-body energy . Similarly, given a target periodic orbit around L2 of

the Jupiter-Europa-Spacecraft (J-E-S) system, we can find its three-body energy. The small

neighbourhood around the point where J-G-S and J-E-S constant three body energy contour

lines intersect for a given set of energies, represents the switching region. Figure 3.10 shows
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the various regions. The search for probable trajectories is done as follows:

1). We choose a point outside the switching region, lying on the J-G-S contour line and close

to the switching region. Call it P (=(a0,e0)) and time t = 0. Without loss of generality, we

assume the spacecraft is currently at (or close to) apojove. To uniquely define a trajectory

in the four body system, we need to specify the periapse angle w.r.t the Jupiter-Ganymede

line, ωg and with respect to the Jupiter-Europa line, ωe at time t=0.

2). We want to choose the periapse angle with respect to J-G line so that the spacecraft

get a significant kick from Ganymede towards Europa, and ends up in the switching region.

Recall from the previous section that this implies the apoapse should occur with the periapse

slightly more than −π with respect to J-G line. We can narrow down the search space for

ωg at t = 0 to those values, i.e., −.90π < ωg < −.99π.

3). The primary interaction with Europa occurs at periapse. Ideally, once the spacecraft

gets the previously mentioned kick from Ganymede, we want it to get a further kick from

Europa, towards Europa, at the following periapse. Again recall that this implies the next

periapse should occur with periapse sligthly greater than zero with respect to J-E line. If

we use only the planar CR3BP equations for J-G-S system (i.e., put mass of Europa to zero

in the 4-body equations), starting with time t = 0, ωg selected from the above search space,

and ωe with an initial guess, we can find the periapse angle ωe at the next periapse. Using

predictor-corrector sensitivity analysis, we can refine the initial guess for ωe at t = 0, so that

the spacecraft gets a significant kick in the next periapse. Once we have a range of values

of ωe at t = 0 that give the desired phase for the next few periapses, we can use full 4-body

equations to determine the actual trajectory in the switching region. The narrowed down

search space for ωe and ωg is labelled Sω. Recall that the path of the spacecraft in this region

is called the “switching orbit”. The first forward iterate at periapse into the J-E-S region

is labelled as P1f and the first back iterate at apoapse into the J-G-S region is labelled as

P1b. Note that if in step 1, the point is chosen exactly at apoapse, then P1b = P .

4). We need to search for the conditions from the set Sω that will lead to a successive decrease
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in the semi-major axis when iterated forward, and will lead to increase in the semi-major axis

value when iterated back, outside the switching region. This task of iterating in the J-E-S

and J-G-S regions, can be efficiently handled by the Keplerian maps. For each 2-tuple (ωg,ωe)

and a point P (a0,e0) in the switching region, we iterate forward the corresponding point P1f

using the periapse map which is valid only in the J-E-S region, and iterate backward the

corresponding point P1b using the apoapse map, which is valid only in the J-G-S region.

5). Once we have found which values among the set Sω will result in an Jovicentric orbit

from near-Ganymede to near-Europa using the separate Keplerian maps, we use the full

four-body equations to get actual trajectories. In some cases, since the maps are not exact,

the trajectories and transfer times obtained by full 4-body equations differ significantly from

those obtained from the maps. But, we do get a number of topologically different trajectories

by using maps, that are verified by full 4-body equations. We can also cycle through various

nearby (a, e) values in the switching region to get appropriate trajectories.

We show an actual trajectory for the four body system found out using the method described

above in figure 3.11. Figure 3.11(a) shows the semi-major axis time history, starting from

exit from Ganymede to capture by Europa. Figure 3.11(b) shows the time history in an a-e

plot, clearly showing that the spacecraft closely follows constant energy contours in the two

regimes. Figures 3.11(c) and 3.11(d) show the three-body energy history of the spacecraft for

Jupiter-Ganymede-Spacecraft and Jupiter-Europa-Spacecraft systems respectively. The two

solutions were patched together and the switching region, where the switching of dominant

perturber occurs in the actual four body trajectory, is marked. Clearly, the three-body

energy for J-G-S system is constant before the switching region and energy for the J-E-S

system is almost constant after the switching region. This separation of domains of influence

of the two perturbers suggests that the patched three body approach can be used to obtain

good initial guesses for the actual trajectory, which can in turn be obtained by using the

four body equations. Hence, we can use 2 separate Keplerian maps and patch the solutions

appropriately to get initial guesses.

64



The trajectory shown in figure 3.11 has a very long transfer time between the two moons,

arising primarily due to the spacecraft getting stuck in a resonance for a very long time. To

overcome this problem and to design fuel efficient trajectories with realistic transfer times,

we introduce the controlled Keplerian map in next section.
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Figure 3.11: Trajectory found using the Patched Three Body Approximation. a). Semi-major axis time

history b). Trajectory in ’a-e’ plane. c) Jacobi Constant for J-G-S system d). Jacobi Constant for J-E-S

system. The trajectory was obtained by integrating the full 4-body system.
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3.6 A method for designing trajectories using a con-

trolled map

3.6.1 Controlled Keplerian Map

The controlled Keplerian map [2] with a control u is an update map for the angle of periapse

(or apoapse) ω in the rotating frame and Keplerian energy K, F : A× U → A

F




 ωn

Kn


 , un


 =


 ωn+1

Kn+1


 =


 ωn − 2π(−2(Kn + µf(ωn) + αun))

−3/2

Kn + µf(ωn) + αun


 (3.82)

where un ∈ U = [−umax, umax], umax ≪ 1. The term α = α(CJ , K̄) is approximated as

constant such that:

α(CJ , K̄) =

√
1

ā

(1 + ē)

(1− ē)

ā = − 1

2K̄

ē =

√

1−
(
CJ − ā

2ā3/2

)2

The control is modeled as a kick at periapse, which increases the speed by un and the

Keplerian energy K by αun. The control strategy employed to get desired trajectories is

two-fold: it involves a coarse control part where the aim is to get rapid decrease in the

semi-major axis value of the spacecraft, and a fine control part, where we target specific

regions of interest in the phase space. The reason for this two-pronged strategy is that the

traditional forward-backward approach [37] works best only if there are no big resonances

in between the starting point and the target region. If the source and target regions lie in

two distant regions separated by slow transport barriers, then the time before an intersection

takes place in this approach is very large. During that time, the extensions of both the image

of source segment and preimage of target segment grow exponentially in size, which requires

exponentially increasing number of discrete points to resolve them. As was mentioned earlier,
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and is evident from figure 3.6(b), the phase space for our problem is populated with big

resonances resulting in a mixed phase space, and hence, the forward-backward approach

alone would not be sufficient for our purposes.

3.6.2 Coarse control algorithm

The coarse control algorithm is based on the fact that large changes in semi-major axis (i.e.,

the action) occur for a very small range of values of the periapse angle (i.e., the angle), see

figure 3.6a. We adopt the policy of ‘going with the flow’, until we approach a region where

there is going to be large change in the semi-major axis. The outline of the algorithm for a

single three body system is as follows:

Figure 3.12: The coarse control algorithm

1). At (ωn, an), we iterate forward nmax steps with u = 0, where nmax holds an inverse

67



relationship with umax. If any of the calculated iterates lies with the region of high increase,

labelled A+ or the region of high decrease, labelled A−, we calculate the control (2a and 2b,

respectively, see below). Else, we do not employ any control at the current iteration step

(i.e, un = 0). The size of both these regions(i.e A− and A+) is directly proportional to the

parameter δω, i.e. a higher value of δω implies that control is used for a bigger range of ω

values, on either side of ω = 0 line.

2a). Ideally, if one of the future iterates calculated above is in A+, we want to apply control

so as to move the iterate away from it to the neighboring A− region. If the ith iterate (where

i < nmax) is in A+, we calculate a control sequence over the next i iterates. The control

domain (i.e., [−u, u]× [−u, u]× ...i times) is coarsely discretized and we obtain the iterates

using each control sequence resulting from the discretization. Computations were done using

a discretization equilavent to ∆V of 1 m/s, and umax was taken as equivalent to ∆V of 5

m/s, in either direction. If there are some sequences that result in the final iterate being in

A−, we choose the sequence which results in the final iterate being in a small neighborhood

of ωopt. Here ωopt is the value of ω which leads to the maximum decrease in semi-major axis

over one iteration. Then, using sensitivity analysis with respect to the control at the last

non-zero iterate in the chosen control sequence, we can adjust its value so that the resultant

ω ≈ ωopt, and hence get the maximum possible kick in the desired direction.

On the other hand, if there is no such sequence that results in the final iterate being in A−,

we need to move the final periapse angle in the other direction so as to minimize the increase

in a. This local optimization can be handled by a similar discretization procedure as above.

2b). If one of the future iterates is in A−, we again use the aforementioned discretization of

the control domain, and choose the control sequence in the same way as before. Sensitivity

analysis is used to get final ω ≈ ωopt.

3). Once a threshold value of a is reached, we switch to fine-control. Fine control can be

handled by forward-backward method, where the target is the interior of the first intersection

of the stable invariant manifold of a periodic orbit around L2 with the Poincaré section at
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periapse.

In figure 3.13 we show a sample trajectory obtained by the above mentioned algorithm, for

the Jupiter-Europa-Spacecraft system. Note that as a result of appropriately timed control

inputs, the spacecraft visits the region of high decrease of semi-major axis.

We can use this algorithm within the framework of patched three body approximation. We

use the controlled apoapse map to get the trajectory from near Ganymede to the switching

region, and then patch it with another trajectory obtained by using controlled periapse map

to get it near Europa (then we can get it captured by Europa by using the forward-backward

fine control). A sample trajectory for such a case is shown in figure 3.14. The spacecraft

completes this trajectory using 160 m/s of fuel in 1.7 years, which included 116 revolutions

around Jupiter (periapse/apoapse passages). The time taken for this mission is less than

10% of that taken for the previously shown optimal (zero) fuel trajectory for the same four

body system. Also, this framework is an improvement over the methods that involve large

∆Vs [38] and is a more complete method of designing trajectories in a four-body system

than using variants of the traditional patched conics approach [39].
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Figure 3.13: Sample trajectory designed using the algorithm. (a) Plot of Semi-major axis vs. periapse

angle. (b) Time history of semi-major axis. The spacecraft repeatedly visits the region of large decrease in

semi-major axis.
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Figure 3.14: Trajectory for the Jupiter-Europa-Ganymede system using patched three body approach. (a)

Time history of semi-major axis. b). Semi-major axis vs. eccentricity plot with three-body energy contours

lines in the background.
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3.6.3 Trade-off Between fuel and time-of-flight, and other issues

We briefly discuss the tradeoff issues between time-of-flight and fuel(control), since such a

tradeoff is typically discussed in all low fuel mission design frameworks. The amount of fuel

used for providing ∆Vs is expected to be proportional to the parameter δω upto a saturation

point, since this parameter decides the size of the region in phase space where the control is

actively applied, as discussed previously. More proactive control is also expected to decrease

the time-of-flight up to a certain limit. In figure 3.15, we show plots illustrating the time-of-

flight vs. fuel tradeoff for a single three body system (Jupiter-Europa-Spacecraft). Several

random initial conditions were taken near a = 1.5, and we show the plots for two of those

conditions, that take the most (upper line) and the least (lower line) amount of iterations

to reach the exit region, for three different values of δω. The basic characteristics of this

system are expected to be similar for patched three body systems.
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Figure 3.15: Plot showing the tradeoff between control used and number of iterations required for two

different intial conditions leading to capture around Europa for the Jupiter-Europa-Spacecraft planar CR3BP
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3.7 Conclusion

With the help of a family of analytical two-dimensionalimensional Poincaré maps, exact

uncontrolled trajectories in the full equations of motion of the four-body Jupiter-Europa-

Ganymede-Spacecraft system were found. The maps were used for fast propagation in

regimes where one of the two perturbers is dominant.

Additionally, the maps reduced the patching region search space, i.e., the search for the

region where the perturbers have comparable influence, given by critical values of spacecraft

phase with respect to the Jupiter-Ganymede and Jupiter-Europa systems. The fast propa-

gation done by the maps on either side of the patching region made preliminary trajectory

generation faster than given by integrating the full equations of motion. Many of the tra-

jectories obtained using the algorithm were topologically similar to those finally obtained by

full integration (i.e., same number of orbits around Jupiter). The fact that the two three-

body energies were almost constant in the actual four-body trajectory on either side of the

patching region (a) gives us confidence that there exist actual trajectories that shadow those

obtained with the help of the maps and (b) implies a separation of regimes of influence of

the perturbers.

The relationship between trajectories found via the maps and trajectories in the full n-body

equations of motion needs to be investigated further to make the qualitative analysis given

here more applicable to actual implementation for mission design.

Taking note of the apparent validity of the patched three-body approach and utility of the

Keplerian maps, we used those Keplerian maps to derive approximate controlled trajectories

in the four-body system. Depending upon the chosen value of the parameter of the algorithm,

a compromise can be reached between the amount of fuel used and the time taken to complete

the mission. We believe that the numbers so obtained should give us a first order estimate

of fuel required for actual trajectories in full four-body systems, although this needs to be

verified by further investigations.
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The use of multiple gravity assists and algorithms such as those mentioned in this paper

are stepping stones towards automating the design process of various complicated missions

envisioned for the future. This is a significant improvement over the methods that involve

large ∆Vs and is a more complete method of designing trajectories in a four-body system

than using the patched conics approach.

The maps used in both the algorithms are two-dimensionalimensional maps, primarily be-

cause the system we considered, the Jupiter-Europa-Ganymede system, is a very nearly

coplanar system, and hence, the dynamics involved for a spacecraft restricted to this plane

occur in 2 degrees of freedom. This approach can further be extended to model 3 degree of

freedom motion, resulting in 4-dimensional maps; the two additional dimensions being incli-

nation i and the longitude of the ascending node Ω. Use of 4-dimensional maps may uncover

some exotic trajectories, although the implementation will be difficult since the search space

will be larger due to the increase in dimensions.

The algorithm mentioned for finding appropriate control inputs can also be used in any

physical modeling problem in which the dynamics are similar to those described by this

Keplerian map. The main characteristic of this map is that the kick is significant for only a

small range of values of an angle, and hence using appropriate control inputs found out by

this algorithm, a particle can be made to have desired large changes in the corresponding

action

74



Chapter 4

Almost Invariant Sets As ‘Ghost

Rods’ In Phase Space Mixing

In collaboration with Mark Stremler and Pankaj Kumar

4.1 Motivation and introduction

Qualitative and quantitative understanding of mixing in phase space is often of great interest

while analyzing the dynamics of a complex system. The field of fluid mechanics has proved

to be a very productive playground for the understanding of mixing in dynamical systems

in general, because of the correspondence between phase space trajectories of Hamiltonian

systems and observable fluid (or tracer) particle trajectories for two-dimensional incompress-

ible flows, where the stream-function plays the role of the Hamiltonian of the one degree of

freedom system. Dynamical systems theory tells us that while it is impossible for two-

dimensional-flows governed by a time-independent Hamiltonian to show chaotic behavior,

the systems governed by a time-dependent Hamiltonian can be chaotic under appropriate

conditions [15]. The resulting one-and-a-half degree of freedom systems (which in fluid me-
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chanics language would correspond to two-dimensional unsteady incompressible flow) can

be studied by the use of Poincaré sections, and the resulting two-dimensional maps can be

studied by a variety of techniques from the dynamical systems toolbox, such as those men-

tioned in chapter 2. Meanwhile, the wide variety of experimental techniques available for

such fluid systems can further help in motivating and verifying various hypotheses and the-

oretical results. On the other hand, the application of various dynamical systems techniques

has helped gain deeper understanding of dynamics of a wide variety of fluid systems.

Recently, topological methods have been successfully applied towards analyzing mixing in

such fluid systems. The basic premise has been to consider the fluid flow as a diffeomorphism

on a two-dimensional manifold, and use ideas from Thurston-Nielsen theory (see chapter 2)

to obtain lower bounds on the complexity of the flow, by forming a braid composed of

(2+1)D (space+time) trajectories of physical stirrers or topological barriers such as fixed

points (‘ghost rods’) of the flow map. In this chapter, we merge statistical and topological

approaches, and extend the state-of-the-art in this type of mixing analysis. We argue that

the topology of the braid representative of a system can be characterized more generally by

the almost-invariant-set structure of the flow and hence Thurston-Nielsen theory can still be

applied to flows where there are no easily discernible exact periodic orbits ( or at least none

of low enough period to be of interest). We contend that these almost-invariant-sets are the

natural objects on which to pin the Thurston-Nielsen classification theorem (TNCT).

In our example system, we demonstrate that the phase space can be decomposed into two

subsets such that there is a very small probability that typical trajectories beginning in each

subset will leave this subset in a short time. One of these subsets is a disconnected set of N

components, where the N components map one to another. This is the almost-invariant set,

and the disconnected components of this set act like N punctures in the original formula-

tion of TNCT. The other subset is its phase space complement. We compute these subsets

directly using the eigenvectors of discretized Perron-Frobenius transfer operator via the set-

oriented approach, a methodology which has been discussed in some detail in Chapter 2.

We assert that this work marks an important step in making the ghost rod methodology
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applicable to realistic fluid flows with arbitrary time-dependence. We also conjecture that

this generalization is applicable to a wide variety of dynamical systems, and not just fluid

systems.

The chapter is arranged as follows: We give a brief review of the problem of fluid mixing

in the next section, focussing on the development of topological techniques in the literature

starting with the seminal work of Aref [15]. We then describe the fluid system that we use

as a testbed for analysis. In the subsequent section, we go over the results for that system

already known in the literature in which a braid is identified by motion of three periodic

points in the flow, and the TNCT is applied to obtain a lower bound on the topological en-

tropy of the flow. We then describe the application of the TNCT using an almost-invariant

set framework, for a parameter range of the same problem where no discernible periodic

points are known to exist.

4.2 Background on fluid mixing

4.2.1 Fluid mixing and chaotic advection

Fluid mixing is an everyday phenomenon. It occurs in nature and in a variety of man-made

devices. One of the ways to enhance mixing in a fluid system is to generate turbulence in the

flow. However, in the micro and nano scale, due to scaling laws, it is unfeasible to generate

turbulence [40]. Thus, the flow is laminar in micro-fluidic systems most of the time and

fluid mixing is quite different from that in macro-scale systems. Even in some macro-scale

systems, the viscosity of the fluid can be very high and turbulence can also be very difficult

to produce.

The theory of chaotic advection [15] has been a fruitful tool for understanding mixing from

the geometric point of view. Given an incompressible flow on a two-dimensional domain,

we can write the equation of motion for passive fluid particles in terms of derivatives of a
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stream-function, ψ(x, y, t).

ẋ =
∂ψ(x, y, t)

∂y

ẏ = −∂ψ(x, y, t)
∂x

As mentioned in the 4.1, ψ(x, y, t) here acts as the Hamiltonian for the dynamical system, and

if ψ depends explicitly on time, the resulting flow can be chaotic. The phase space structure

that can emerge as a result of a time-dependent Hamiltonian can be quite complicated, and

the resulting topological chaos is a major topic of research. There has been a significant

amount of interest in understanding how it arises, how to detect it, and how to design for it

[41].

One of the methods that has been employed in the literature to study such systems is to

compute the Lyapunov exponent or topological entropy by performing brute-force numerical

computations to calculate the stretching of non-trivial material lines [16]. Not only is this

method resource-intensive, but the results obtained are hardly robust with respect to per-

turbations in parameters or stochastic perturbations to the system. This approach typically

fails to predict how perturbation will impact the chaotic nature of the flow.

The analytical approaches to studying chaos in such systems have been Melnikov-type meth-

ods [42],[43] or Kolmogorov-Arnold-Moser (KAM) type methods [44]. The essential idea in

this class of techniques for examining chaotic advection is to study chaotic systems which

are a result of adding small perturbations to non-chaotic integrable systems. The Melnikov

method [45] perturbs the original non-chaotic system with a small excitation, and measures

the distance between stable and unstable manifolds of the resulting Poincaré map using a

term in the Taylor expansion. While it is one of the few analytical approaches to predicting

chaos, it also requires that the original unperturbed trajectory is available in an analytical

form, a limitation which severely restricts the use of this method. Moreover, the Melnikov

method is useful only when the system is not very far from a non-chaotic state, and hence,

cannot be applied to systems which cannot be written in the form of a small perturbation
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away from a non-chaotic regime.

4.2.2 Topological approach to fluid mixing by chaotic advection

Topological ideas have been in use for analyzing fluid motion for a long time. Ever since

topology was considered an independent field of mathematical study, there have been numer-

ous efforts to apply topological ideas to understand the complex motions that fluid systems

are capable of generating. The various topics studied via the topological approach include

existence and stability of knotted vortices [46], and motion of vortex rings [47], among other

things. See [48] for a historical development of topological ideas in fluid mechanics.

We are mainly concerned with the idea of topological chaos, that was first introduced to

fluid mechanics in the investigation of the mechanism of stirring in an experimental study

[17]. They studied two different periodic motions of three stirrers in viscous fluid flow in a

two-dimensional circular domain. The application of the TNCT then led to classification of

diffeomorphisms corresponding to different stirring protocols. This classification was used to

predict which stirring-protocols will lead to pseudo-Anosov (pA) diffeomorphisms, i.e., the

flow in which exponential stretching is experienced in one direction at every point, leading

to efficient mixing.

This approach was extended in [49], where the authors showed that physical stirrers are not

required for the application of the above framework for classification of the stirring protocols

into various TN representatives. It was argued that since topological phase space barriers

such as periodic points also ‘stir’ the fluid by continuity assumptions of the flow, they act

like physical stirrers from the topological point of view. The term ‘ghost rods’ was first

used in [50], where the TNCT based topological framework was applied by considering a

combination of physical rods and periodic points as the stirrers. It was shown that nonzero

topological entropy for certain topologically trivial motions of the physical rod(s) could be

accounted for if the braids were formed by considering the trajectories of physical rods and

certain periodic points. Further advances in using the concept of periodic orbits as ghost rods
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were made in [51] and [52], where the topological approach was applied to design a certain

stirrer protocol in two-dimensional and three-dimensional lid-driven cavity flows respectively,

consisting solely of periodic points in the flow.

The significance of ghost rods lies in the prediction of chaos based on limited data regarding

their motion. In some physical situations, it may be possible to observe ghost rods and

from their trajectory topology infer what possible, but unobserved, motions the system can

exhibit. For instance, observing only the regular periodic motion of these ‘ghost rods’ can

lead us to infer that the system is chaotic.

In this chapter we use a similar two-dimensional lid-driven cavity flow system and describe

how to identify ghost rods and apply the TNCT when periodic orbits no longer exist, or are

not readily discernible.

4.3 The lid-driven wide-cavity flow

4.3.1 Designing for chaos: The reference case

The model that we use as the testbed for developing our analysis techniques is described in

this section. This model has been described in [53], and is considered here for its simplicity,

and the fact that it is amenable to exact solutions. This relatively simple fluid system has

an easy to visualize piecewise steady velocity field, but due to this time dependence of the

stream function, exhibits complicated dynamics.

Consider the two-dimensional lid-driven cavity flow in an infinitely-wide cavity. If we enforce

spatial-periodic boundary conditions on the top and bottom surface, the resulting flow can

be viewed as pieces of lid-driven cavity flow with periodic side boundary conditions, and

each such piece will represent the whole domain. The vertical boundary between two such

pieces is a streamline of the flow, and such boundaries divide the wide cavity into an array
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Figure 4.1: Streamlines with both top and bottom walls moving under piecewise uniform velocity: (a)

0 ≤ t ≤ τf/2 (b) τf/2 ≤ t ≤ τf . Bottom boundary velocity is mirror image of the top boundary velocity

about the horizontal axis.

of rectangles. For Stokes flow in such a two-dimensional rectangular domain

M = {(x, y) : 0 ≤ x ≤ a,−b ≤ y ≤ b}

as shown in figure 4.1, the stream function ψ(x, y) satisfies the two-dimensional biharmonic

equation

∇2∇2ψ(x, y) = 0.

We assume that the tangential velocity on top and bottom boundaries can be expressed as

the sum of a series of sinusoidal functions, and for our analysis, we take two terms in such

series. Then, the piecewise steady tangential velocity driving the flow on the top boundary

is given by

V (x) =




U1 sin

(
πx
a

)
+ U2 sin

(
2πx
a

)
0 ≤ t ≤ τf/2

−U1 sin
(
πx
a

)
+ U2 sin

(
2πx
a

)
τf/2 ≤ t ≤ τf .

and corresponding tangential velocity on the bottom boundary is given by −V (x), where

τf is the normalized period of the periodic boundary conditions (and hence the fluid flow).

This symmetry in the boundary conditions implies that the flow pattern is reflected about

the line x = a/2 every τf/2 units of time.

Using the boundary condition above, the streamfunction is given as:

ψ(x, y, t) =




U1C1f1(y) sin

(
πx
a

)
+ U2C2f2(y) sin

(
2πx
a

)
0 ≤ t ≤ τf/2

−U1C1f1(y) sin
(
πx
a

)
+ U2C2f2(y) sin

(
2πx
a

)
τf/2 ≤ t ≤ τf

(4.1)
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where

fn(y) =
2πy

a
cosh

(
nπb

a

)
sinh

(nπy
a

)
−

2πb

a
sinh

(
nπb

a

)
cosh

(nπy
a

) (4.2)

and

Cn =
a2

2nπ2b

[
a

2nπb
sinh

(
2nπb

a

)
+ 1

]−1

(4.3)

There are no singularities in the boundary conditions for this system, and hence it is a

feasible model to build for practical applications. Figure 4.1 shows the possible streamlines

with the two different piecewise uniform boundary motions. The motion in the left panel is

labeled as FR+ flow (i.e., the flow from t = nτf to t = (n + 1)τf/2) and the motion on the

right is labeled as FL- flow (i.e., the flow for (n+1)τf/2 ≤ t ≤ (n+1)τf ) for all non-negative

integers n. This set of boundary condition leads to chaotic motion, and a typical picture of

a material line (i.e., a horizontal line connecting xL and xC as defined below) stretching over

three periods is shown in figure 4.2(a).

Using symmetry arguments, a specific ratio of the magnitudes of the two sinusoidal terms in

the boundary conditions, U2/U1, for a fixed value of the period of the flow τf , is found such

that it generates three period-3 points in the rectangular domain which form a non-trivial

braid in (2+1)D space time dimensions, shown in figure 4.2(b). Looking at figure 4.1, it is

apparent that if we can ensure the motion of the three fixed points as given below, it will

result in the following stirring protocol in the flow:

1). There exist three points in the flow xL, xC and xR, such that xC is on the centre line

x = 0 of domain, and xL and xR are symmetric about x = 0.

2). For 0 ≤ t ≤ τf/2, i.e., the FR+ component of the flow period, xL is fixed.

3). During the same time, xC and xR exchange their positions, while moving clockwise.

Since the flow pattern is reflected about x = a at t = τf/2,

4). For τf/2 ≤ t ≤ τf , i.e., the FL− component of the flow period, xR is fixed.

5). During the same time, xC and xL exchange their positions, while moving anti-clockwise.

The value of U2/U1 for which the above conditions are satisfied is found to be ≈ 0.841, and
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(a) (b)

Figure 4.2: (a).Stretching of material lines for a typical set of parameters in piecewise steady wide-cavity

flow. (b) Braiding in the reference case
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we normalize the τf for this reference case to 1, and call it τ ∗f . Since the braiding protocol in

this case is the same as the pA braid discussed in section 2.2, the lower bound hTN on the

topological entropy is again given by log(λTN) ≈ .962, where λTN = (3 +
√
5)/2. The braid

word for this protocol is σ−1σ2. For our analysis, we will keep the ratio U2/U1 fixed while

changing the value of τf away from τ ∗f = 1.

4.3.2 Perturbation of the reference case

We study the effect of perturbation in τf values on the topological entropy h of the flow. In

figure 4.3, the value of h calculated by computing non-trivial material lines in the flows is

plotted for different τf values away from 1. Also shown in the figure is the lower bound hTN

computed via TN theory as discussed in the previous section. The figure shows that this

lower bound is very sharp even for a 5% perturbation in τf on either side of τ ∗f .

Case 1: τf > 1

In the reference case, i.e., when τf = 1, there are three period-3 parabolic fixed points

that act as ghost rods, and form a non-trivial braid. Since the parabolic fixed points are

structurally unstable, we find that for τf > 1, each parabolic fixed point bifurcates into a pair

of saddles and a pair of centers surrounded by elliptical islands, and the Poincaré section

is shown in figure 4.4. The eigenvalues of the fixed points are calculated by numerically

forming the Jacobian of the map at the fixed points. The elliptical islands are ‘leaky’, i.e.,

there is a small amount of transport across the boundaries of those islands, due the fact that

the stable and unstable manifolds of the two saddles intersect transversally for τf > 1. In

fact, the amount of leaking per period is the amount of phase space enclosed by the lobe(

recall section 2.1.2). In figure 4.5, we show the stable and unstable manifolds of saddles in

the middle ‘blob’ and local phase space around it, for τf = 1.01 (where the the transversal

intersection is present, but not evident) and τf = 1.04. Topologically, each blob of phase
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Figure 4.3: Variation of topological entropy as a function of τf . Also shown is the lower bound hTN,3

computed via TN theory for the braid on 3 strands computed at design point.

space consisting of the above mentioned four fixed points (two saddles and two centers) and

the two associated elliptical island pairs act as one ghost rod, thus resulting in a braid on

12 strands reducible to 3 strands. The resulting braiding is topologically exactly the same

as in the case of parabolic fixed points (i.e., the reference case), and hence, the lower bound

predicted by TNCT remains the same. Figure 4.6 illustrates how such blobs move in phase

space to form the same topological braid as before.

Case 2: τf < 1

On the other hand, when the value of τ is decreased below 1, no such period-3 fixed points

are found in the flow. The Poincaré section looks completely chaotic (see figure ??. and

there are no apparent ’ghost rods’ available to form a braid and get a lower bound of the
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Figure 4.4: Poincaré section for τf ≈ 1.01. Note the 3 islands that work like stirrers, and are hence called

‘ghost rods’. Each such island is associated with 2 saddle and 2 centers, as shown in figure 4.5

(a) τf = 1.01 (b) τf = 1.04

Figure 4.5: Phase space structure near x = 0 (corresponding to middle ‘ghost rod’ for 2 different τf

values). While for τf = 1.01 the stable and unstable manifolds seem to overlap (a), they clearly intersect

transversally for τf = 1.04, leading to significant ‘leaking’ into and out of the region bounded by them (b).

topological entropy of the flow. To explain the fact that the lower bound hTN still holds for

.93 < τf < 1 as is evident in figure 4.3, we try to extend the TN framework by the use of

the concept of almost-invariant sets in the next section.
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(a) Initial state

•

(b) First half of the

flow period.

•

(c) Second half of the

flow period.

•

(d) State after 1 flow

period

Figure 4.6: Movement of ghost rods in phase space for τf > 1
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Figure 4.7: Poincaré section for τf ≈ 0.99. Note the absence of any elliptical islands. No periodic orbits

of low period were found.

4.4 Almost-invariant sets

In the absence of periodic points (or elliptical islands), we need to find other structures in

phase space that serve used as ghost rods. For this purpose, we use the concept of almost-

invariant sets introduced in section 2.2. The motivation of this work comes from the spirit

of the TNCT itself. Complexity can be predicted by the motion of periodic points forming

a pA braid which lead to exponential stretching because they tend to drag fluid (or phase

space volume) with them. One can expect that if the AIS structure braids in a non-trivial

way, the TNCT may still be applied to get a lower bound on the stretching and complexity
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of the flow.

4.4.1 Procedure

Set oriented methods and the theory of almost-invariant-sets have been described in section

2.2. Here, we concisely describe the procedure of computing almost-invariant sets for the

wide-cavity flow system. First, we approximate the dynamics on M by covering it with

a collection of n = 19200 boxes, i.e., 240 boxes in the x direction and 80 boxes in the y

direction. We take 100 equally spaced points in the box, perform a forward iteration for

each point for one period of the flow τf and monitor the box reached by the iteration. The

transition probability from a source box to a destination box is measured by the ratio of

the number of points from the source box reaching the destination box in one iteration step.

This transition matrix Pt,τf contains all the information for the computation of the transport

quantities of interest with entries

pij = m
(
f−1(Bi) ∩Bj

)
/m(Bj)

where B1, . . . , Bn are the boxes in the covering, f is the solution map φ
τf
t from time t to

t + τf , and m is the area measure, i.e., the phase space volume measure. Note that the

stochastic matrix Pt,τf may be viewed as a transition matrix of an n-state Markov chain.

Since the matrix Pt,τf is not reversible in time, we form a new reversible matrix Rt,τf and

find its eigenspectrum. We can restrict to only those partitions (A1, A2, ....Ak) such that

each member (or each almost-invariant set) A of such a partition is a union of some sets in

(B1, B2, ...), i.e each A = ∪i∈IBi, for some set of box indices I ∈ {1, 2, ...., n}. The eigenvalues
and eigenvectors of the matrix Rt,τf provide insight into the various almost-invariant sets

present in the system. The first eigenvector v1, corresponding to an eigenvalue λ1 = 1 is the

invariant distribution of the system. Since the system under consideration is a Hamiltonian

system, we find that v1 corresponds to a uniform distribution all over the phase space. This

implies that µ = m, i.e. the invariant measure is the same as volume measure and this is

verified in our computations.
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The two sets given by the regions in phase space such that v2 > c and v2 < c, where the

eigenvector v2 corresponds to the second largest eigenvalue λ2 isolates an almost-invariant

set structure. More precisely, the two almost-invariant-set structures are defined as follows:

Let I1 = {i : (v2)i > c, 1 ≤ i ≤ n} and I2 = {i : (v2)i < c, 1 ≤ i ≤ n}, then A1 = ∪i∈I1Bi

and A2 = ∪i∈I2Bi. Here, by (v2)i, we mean the ith component of the vector v2, i.e. the

value of v2 assigned to the box Bi. For the majority of cases, we will take c = 0, but to

maintain consistency across figures, for non-zero c, we plot (v2)i − c values while identifying

the almost-invariant sets, so that the zero contour on the figure always refers to boundaries

delineating the almost-invariant set structure.

We show the almost-invariant set structure for τf = 0.99 in figure 4.8. The collection of

the three prominent sets, corresponding to the set A1 (i.e., the region where v2 > 0), forms

an almost invariant set. This almost invariant set actually consists of three almost cyclic

components, which form a 3-braid, as discussed next. Each (positive) lower eigenvalue has

an associated eigenvector whose zero contour isolates other almost invariant sets, which

are more ‘leaky’, i.e., lower the eigenvalue, lower is the invariance of the associated almost

invariant set.

Figure 4.8: AIS structure for τf ≈ 0.99. The zero contour is the boundary between the two almost invariant

sets. Compare with the Poincaré section for the same τf shown in figure 4.7
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4.4.2 Braiding of almost-invariant sets

While the period-3 fixed points cease to exist for τf < 1, we can see from figure 4.8 that the

almost-invariant sets still exist in the same region in the phase space. We look for braiding

of these sets, and see if this structure forms a pA braid for τf < 1 similar to the one formed

by periodic points (and elliptical islands) for τf > 1. We use τf ≈ 0.975 for our analysis in

this case. We form 20 different time-shifted versions of the Markov operator P, i.e., Pti,τf

for i = 1, 2, ...20, and ti = (i − 1)τf/20. Then, for each of the corresponding Rti,τf , we find

the almost-invariant structure based on the second eigenvector as mentioned previously. In

figure 4.9, we show these structures for the first half of the time period of the flow. Recall

that this braiding protocol corresponds to σ2, and is the same as the one formed by parabolic

periodic points for τf = 1. Similarly, for the second half of the time-period of the flow, the

stirring protocol is the one given by σ−1. Hence, the braid formed by the almost-invariant

sets structure (given by σ−1σ2) for τf ≈ 0.975 is exactly the same as the braid formed by

periodic points for τf = 1 or by elliptical islands for τf ≥ 1. Three periods of the complete

braid in (2+1)D formed by this structure is shown in figure 4.10. So the lower bound on

topological entropy is again given by hTN ≈ 0.962, and we can see from figure 4.3 that this

lower bound is still valid.
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Figure 4.9: Almost-invariant sets structure for time shifted Markov operators for τf ≈ 0.975. Left to right:

Top-row: ti= 0, 0.1τf , 0.2τf . Bottom row: 0.3τf , 0.4τf , 0.5τf

Figure 4.10: Braiding in (2+1)D via three almost invariant sets for τf ≈ 0.975, a parameter value where

the corresponding periodic points no longer exist. The braid is shown for 3 periods of flow. The braid is

topologically the same as figure 4.2(b)
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4.4.3 Persistence of almost-invariant set structure: Bifurcation of

the braids

Figure 4.11 shows the continuation of the eigenvector which captures the braiding structure

correctly for τf ≤ 1, and the corresponding eigenvalues.
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Figure 4.11: Almost-invariant set structure via continuation of the 3-strand eigenvector found at (b) for

various values of τf and the corresponding eigenvalue. The structure shown in (a), (b) and (c) can clearly

be identified as the 3-strand mode. The structure in (e) consists of 16 strands, while (f) can be seen to have

13 strands. (h) has 10 strands while (i) consists of 8 clearly identifiable strands. The structures in (d) and

(g) are the fuzzy ones which belong to different transition regions.

For 1 < τf < 1.05, the second eigenvector of the corresponding R0,τf matrix gives the correct

braiding structure. The continuation of the 3-strand eigenvector for τf < 1 is carried out

as follows. We discretize the parameter space .8 < τf ≤ 1 into intervals of size δτf =

(0.025/4.74) ≈ .005. Then we calculate the reversibilized Perron-Frobenius operator R0,τf

for each of those parameter values. We compute the top 10 eigenvectors (excluding the

eigenvector corresponding the eigenvalue 1) (ν
τf
2 , .., ν

τf
11) for each of those operators. Our aim

is to identify the eigenvector for each τf which gives the braiding structure for the flow at

that parameter value. We denote this eigenvector by ν
τf
∗ . We know that for τf = 1, the
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eigenvector that gives the relevant braiding structure is the second eigenvector, so ν1∗ = ν12 .

We calculate the inner product of ν1∗ with each of the 10 eigenvectors of the next lowest τf

value, i.e., τf = 1 − δτf , and we compute the inner-product 〈ν1∗ , ν
1−δτf
j 〉 for j = 2, ..., 11.

Then we select the eigenvector at 1− δτf which gives highest absolute value among the dot

products, and call it ν
1−δτf
∗ . Similarly the continuation is carried out for τf = 1 − 2δτf by

taking the dot products with ν
1−δτf
∗ and so on. Denote by βτf the value 〈ντf∗ , ντf−δτf

∗ 〉.

We make some observations based on figure 4.11. The almost-invariant set structure consist-

ing of 3 sets seems to persist till τf ≈ 0.96. We also observe that as the value of τf decreases

further, the structure consisting of 3 almost cyclic sets starts breaking up, as seen in figure

4.11(d). Observe that at τf ≈ 0.95, a structure consisting of 16 almost invariant sets can be

seen (figure 4.11(e)). There is another change in the braiding structure, and figure 4.11(f)

shows a 13-strand structure. Moving further to the left on the τf axis, we see 10-strand and

8-strand structures in figures 4.11(h) and 4.11(i). We show another structure which occurs

during the transition between 13 and 10 strand structures in 4.11(g).

This break up of the AIS-based braiding structure can be better understood by plotting the

βτf values, figure 4.12. This inner product gives a measure of closeness of the eigenvectors for

two neighboring τf values and captures changes in the eigenmode morphology. We observe

that in regions where we can clearly identify the different braiding protocols consisting of

3, 16, 13, 10 or 8 stands, the value of βτf remains almost constant. On the other hand in

the transition regions where there is no clearly identifiable braid structure, there is a sharp

drop in the βτf value, signifying large change in the structure of the eigenvector. Intuitively,

this means that each of the braiding structures persists for a range of τf values, and then

undergoes a transition (or bifurcation) into another braiding structure. Comparing figure

4.11 with figure 4.12, we see that the dips in βτf vesus τf seem to capture the boundaries of

different braiding structures and transition regions well.
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Figure 4.12: (Top) βτf for the range of τf values. The regions where this value stays almost constant are

the regions of persistence of different braiding structures, separated by transition regions where the value

drops significantly.(Bottom) The topological entropy of the flow computed by line stretching is shown in

red. The lower bound computed by TNCT for different braiding structures is shown in blue in the relevant

regions.
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We are interested in finding the lower bound using the TNCT for each of the braiding

structures that we have identified. We compute the time-shifted Markov operators, similar

to what was done for the 3-strand structure in the previous section. We discuss the process

for τf ≈ 0.93, where a 13-strand structure is found. In figure 4.13, we show the phase-shifted

eigenvectors corresponding to τf = 0.93 for first half of the time period τf,13, where the

braiding motion of 13-strand structure can be clearly seen. In figure 4.14, we illustrate the

motion of various strands during one period of the flow. Each of the 13 strand structures

consists of four strands each on left and right, and five in the center. During the first half

of the time period (i.e., R+ flow), the center blob moves as in the case of 3-strand structure,

but one of the strands (labelled B1 in figure 4.14) breaks away from the center blob, and

does not undergo the prescribed R+ motion completely. Similarly, during pulse 2, the strand

labelled C1 moves out of the central blob and does not complete the prescribed L− motion.

This leaking of phase space volume, captured by the AIS computation, helps us identify the

correct braiding occuring in the flow. This braiding is clearly topologically different from

the braiding on 3 strands shown earlier in figure 4.9.

(1) (2) (3)

(4) (5) (6)

Figure 4.13: AIS identified by second eigenvectors of time-shifted Markov operators for the first half of

the time period (the time-shift is increases from t=0 at (1) to t=τf/2 at (6)), for τf ≈ 0.93. The braiding

motion of the 13-strand structure is clearly evident.
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(c) Movement during pulse 2
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(d) State after 1 period(or 2 pulses)

Figure 4.14: Movement of 13 almost invariant sets over 1 period consisting of 2 pulses. The braiding is

period-13. Note that what was formerly the central blob now consists of five disjoint sets (strands), shown

in red. During the first pulse, the strand B5 breaks away from the blob, and does not follow the prescribed

motion. Similarly during pulse 2, C1 does not move with rest of the central blob. This phenomenon captured

by the AIS structure, makes the braiding different from the braiding on 3-strand shown in figure 4.9
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Number of strands Topological entropy of the braid

3 0.962

16 0.961

13 0.956

10 0.936

8 0.894

Table 4.1: List of topological entropy values of the braids formed by AIS structures as τf is

decreased below 1.

The complete mathematical braid for the 13-strand structure for one time period is shown

in figure 4.15. This braid consists of 22 ‘interchanges’ or crossings in each half of the time

period, and the braid word is given by:

τf ≥ t ≥ τf/2 : σL = σ10σ11σ10σ12σ11σ10σ−4σ−5σ−3σ−6σ−4σ−2σ−7σ−5σ−3σ−1σ−6σ−4σ−2σ−5σ−3σ−4

τf/2 ≥ t ≥ 0 : σR = σ−3σ−2σ−3σ−1σ−2σ−3σ9σ8σ10σ7σ9σ11σ6σ8σ10σ12σ7σ9σ11σ8σ10σ9.

The complete braid word for one time period is formed by composing the above two braid

words together (i.e., σLσR). Note that the above braid word is given in the convention

described earlier, i.e., the last interchange appears first. The lower bound on the topolog-

ical entropy of this braid is found to be hTN,13 ≈ 0.956. This braid persists for roughly

0.91 ≤ τf ≤ 0.93. We follow a similar procedure for finding the lower bound on topological

entropy for braids consisting of 8, 10 and 16 strands. Table 4.1 lists the topological entropy

of the various braids. The braid words for all the braids are given in the appendix. We see

that the lower bounds are sharp lower estimate, and more importantly, a good estimate for

the actual topological entropy calculated by line stretching for τf values in the respective

τf regions, as shown in figure 4.12. This is a key result and gives us confidence in

asserting that the AIS-based topological analysis can be used in the framework

of the TNCT. We have first identified the eigenvector ν1∗ , of the Markov operator that
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correctly picks up the braiding at the design point, i.e., τf = 1. Then we identify braiding

structures defined by the eigenvectors formed by continuation of ν1∗ , and applied the TNCT

on those braiding structures and found that topological entropy of those braids are excellent

lower bounds and estimates of the actual entropy of the system for the relevant parameter

values.

Next, we show the mathematical representations of the various braids described above. Note

that the basic behavior in all these cases tends to follow the pattern observed in the 13-strand

case. As is evident from figure 4.14, one of the strands from the center blob tends to break

away from the prescribed R+ and L− motions, and hence we get topologically different braid-

ing in each case. Notice that since the number of strands decreases monotonically from 16 to

8 while moving left on the τf axis, the fraction of phase space volume effectively not folllow-

ing the prescribed motions of the original 3-strand design point increases monotonically as

(1/16),(1/13),(1/10) and finally (1/8). This deviation from the braiding protocol of design

points (i.e., τf = 1) due to the result of phase space leaking, results in inefficient mixing

away from the design point, as evident in figure 4.12 and is captured by the AIS structures.
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 1     2     3    4      5    6     7     8     9    10  11   12  13

Figure 4.15: Mathematical representation of the braid on 13 strands, τf = .9283. Pulse 1 refers to first

half of the time period, and Pulse 2 is the second half. This is a periodic braid with period 13. The time is

increasing from bottom to top.
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Figure 4.16: Mathematical representation of the braid on 16 strands, τf = 0.9494. Pulse 1 refers to first

half of the time period, and Pulse 2 is the second half. This is a periodic braid with period 16. The time is

increasing from bottom to top.
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 1
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 2

Figure 4.17: Mathematical representation of the braid on 10 strands, τf = 0.8966 Pulse 1 refers to first

half of the time period, and Pulse 2 is the second half. This is a periodic braid with period 10. The time is

increasing from bottom to top.
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1     2     3     4     5     6     7     8

Figure 4.18: Mathematical representation of the braid on 8 strands, τf = 0.8439. Pulse 1 refers to first

half of the time period, and Pulse 2 is the second half. This is a periodic braid with period 8. The time is

increasing from bottom to top.
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Remarks:

• Our work generalizes the TN-framework to systems which have no periodic fixed points

by the use of AIS structure of the system. This method is effective because the set

oriented approach enables us to find the sets that do not ‘leak’ significantly and also

are almost cyclic (or periodic) in time. If they braid non-trivially, they mimic the

behavior of physical rods or motion of punctures that is required for existence of chaos

by the application of TNCT.

• The braids on 8, 10, 13 and 16 strands comprise of ‘blobs’ of phase space that have

formed after the break up of sets that made up the 3-set AIS. This breakup can be

seen to be a result of leaking of phase volume roughly along the invariant manifolds

of periodic points for τf > 1. In figure 4.19, the invariant manifolds are plotted for

τf ≈ 1.01, and the AIS structure for τf = 0.93 is also highlighted. It is observed

that the new sets appear in the AIS structure along the manifolds, close to primary

intersection points.

• The braid words for the braids consisting of different number of strands have been

identified by visually inspecting the space-time crossings of the various sets that form

the AIS structure. This process can potentially be automated in the spirit of [54],

where an algorithm to automatically compute braid crossings of particle trajectories

has been described. The automation for AIS is more involved because of the fact

that crossings of different sets may be hard to define mathematically in a general way.

Defining the geometric center of each set as the ’fixed’ point could be a starting point

for such a procedure.

• The computation of the entropy of a given braid has been carried out using the freely

available software based on the Bestvina-Handel [20] train track algorithm. But re-

cently, another more computationally efficient algorithm [55] has been reported, which

can significantly speed up the process.
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• AIS structures can be computed for systems accessible solely by time series data. See

[56] for an application of set-oriented techniques to detect AIS structures using position

data of ocean surface flows. This implies that the TN-framework may be extended to

such systems, making it potentially a very powerful technique for quantitative and

qualitative analysis of complex systems.
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4.5 Contribution to the literature

Our work is the first instance of using the concept of almost-invariant sets as central ob-

jects in the context of Thurson-Nielson classification theorem for the purpose of calculating

lower bounds on topological entropy by looking at the non-trivial braids formed in the flow.

This broadens the scope of problems where such a bound could be found i.e., time varying

systems that do not have any well defined fixed points, such as free surface flows, or time-

independent systems which are operating in a parameter regime where there do not exist any

easily-identifiable fixed points. We give numerical evidence that these almost-invariant-sets

are the natural objects on which to pin the Thurston-Nielsen classification theorem. This

implies that prediction about chaos can be made by looking at regions in phase space that

move together for finite amount of time. We also show that the lower bound given by this

procedure holds even in the case where the braid word is not the one originally formed by

periodic points i.e., in case of braid bifurcation, the new braid dictates the complexity of the

flow.
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Figure 4.19: (a) Invariant manifolds for τf = 1.01, with three of the six saddle points marked. Also marked

is the primary intersection point q1,3. (b) The 13-AIS structure for τf ≈ 0.93 is superimposed. Notice that

the sets in this structure seem to lie on or very close to the manifolds, and the new sets appear near the

primary intersection points.
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4.6 Addendum: Phase space mixing in the three-body

problem

The planar circular restricted three-body problem, described in chapter 3 is a classical prob-

lem in celestial mechanics, and has been analyzed using a variety of dynamical systems

techniques. In this section, we document an attempt to study mixing in the phase space of

the PCR3BP using topological methods, and the almost-invariant sets framework described

earlier in this chapter. Braiding in the three-body problem has generally been studied in the

context of configuration-space (position space) orbits of various bodies that form interesting

looking braids [57], [58]. But our aim is different as we want to explore the possibility of

proving and estimating chaotic behavior in a specific case of the three-body problem, as was

attempted in [59] by a different set of topological methods.

4.6.1 Description of the problem

We are interested in finding non-trivial braids that occur in the phase space of the PCR3BP,

using the framework of almost-invariant sets developed previously in this chapter. We restrict

our attention to two-dimensional Poincaré maps on the three-dimensional energy manifold

of the PCR3BP, and hence look for (2+1)D braids. One key difference between this problem

and the fluid-flow problem that was discussed earlier is that the braids in PCR3BP lie in the

phase space itself, unlike the extended phase space (of two space and one time dimension)

braids discussed before. For our computations, we choose the mass parameter µ of the system

to be ≈ 0.001, and choose the Jacobi constant CJ ≈ 3.04, which implies that the particle P

cannot move between different realms. The particle is initially chosen to be in the interior

realm, and will stay there for all time. We will work in the rotating coordinate system and

use polar coordinates (r, θ, ṙ, θ̇) for our computing the Poincaré sections.
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Poincaré maps defined

We consider the Poincaré surface of section defined by (θ = θi, θ̇ > 0) and the coordinates on

the section are (r, ṙ). Defining a family of Poincaré maps Pθi on a two dimensional section

Σθi in the four dimensional phase space, where

Σθi = {(r, θ, ṙ, θ̇)|θ mod 2π = θi and H(r, θ, ṙ, θ̇) = −0.5CJ , with θ̇ > 0} (4.4)

We define the map as,

Pθi : Σθi → Σθi (4.5)

R(θi) → R(θi + 2π) (4.6)

where R = (r, ṙ), θi = i(δθ)/(2π) for i = 1, ..., n and δθ = (2π)/n. We take n = 16 for our

analysis.

Given an initial condition (r, ṙ) on the section Σθ, we perform the following computations

to obtain the Poincaré map numerically. First, θ̇ is found by using the relation obtained by

invariance of Jacobi constant

θ̇ =

√
−(CJ + 2Ū + ṙ2)

r

Then we obtain the positions and velocities in rectangular coordinates in the rotating frame

x = r cos θ

y = r sin θ

ẋ = ṙ cos θ − r sin θθ̇

ẏ = ṙ sin θ + r cos θθ̇

The initial condition is propagated forward using the PCR3BP equations, and intersections

with the Poincaré section Σθi are recorded. Figure 4.20 shows the connected chaotic compo-

nents of the Poincaré sections for θi = 0, π/8, 2π/8. We notice that various elliptical islands

associated with different resonance regions move in a circular motion as θi is increased from 0
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to π/8 and beyond. The direction of motion of these resonances can be identified by seeding

a point inside the elliptical islands, and then looking at the iterates of this point. For in-

stance, the motion of the resonant islands with the red circles in figure 4.21 is anti-clockwise

(period 4 and period 5), and those shown with green circles move clockwise (period 2 and

period 3) as the angle of section θi is increase from 0 to 2π. The big period one resonance in

the middle of the surface of section is the dividing surface between resonant islands rotating

in the two directions.
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Figure 4.20: The connected chaotic component for three different Poincaré sections, where an initial

condition was iterated forward for 50000 times (a) θi = 0 (b) θi = π/8 (c) θi = π/4
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ṙ

Figure 4.21: Direction of movement of different resonances as stirrers. Two of the resonances that move

anti-clockwise are shown with red circles inside them, while the the two with the green circles move clockwise

as θi is increased from 0. The resonance containing the blue circle acts like the central stirrer for braid

analysis.
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The above observation implies the saddle (or center) points associated with these resonances

act like stirrers, moving in opposite directions. First we consider one resonant island moving

in each direction (since the others rotate parallel to one of the two chosen resonant islands,

this is is sufficient) . If we pick a period k island moving clockwise, and a period m island

moving anti-clockwise, we can look at a higher iterate of the map (where the period will

be given by the lowest common multiple of m and k) in which both the islands will come

back to the starting position after one iteration of this higher period map. We use the map-

ping described in [22] for circular motion on a periodic domain, and consider the resonance

containing the blue circle in to be the stationary central stirrer. Consider the motion of

the saddle points which rotates anti-clockwise around this central stirrer, as shown in 4.22.

The braid word for this motion can be written as σ−2σ1σ2σ−1σ2σ1, which is a trivial braid,

and hence the TNCT predicts the lower bound to be 0. Thus, we do not get any useful

information by doing the topological braid analysis of this flow, by solely looking at periodic

points.

Since the braid formed by looking solely at periodic points does not yield any useful infor-

mation, we use the set-oriented method of finding almost-invariant sets and try to identify

other braids that could possibly exist in the PCR3BP problem.
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(a) (b)

Figure 4.22: (a) The braiding motion of the two counter-rotating saddle points. (b) The mathematical

braid formed by the motion. This braid is topologically trivial and TNCT does not give any lower bound

on this braid.
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4.6.2 Almost invariant sets in the Poincaré section

Similar to the procedure followed earlier in this chapter for the fluid system, we form a

number of time-shifted Perron Frobenius operators, which we denote by Mθi on section θi,

since the role of time is now played by the angle θi in this problem. The region in the two

dimensional section on which we compute this operator is isolated by computing the outer

boundary of the connected chaotic sea in the respective Poincaré section. In figure 4.23, the

relevant section of the phase space over which the operator is computed is shown in black.

We discretize the region (0.1 < r < 1,−1 < ṙ < 1) using 16000 equally spaced boxes, and

then extract the region of interest (called the recurrent set in literature) consisting of ≈ 7000

boxes.

We plot the various eigenvectors of the reversibilized operator constructed on θi = 0 section,

i.e.,M0 in figure 4.24. By comparing the eigenvector plots to figure 4.20(a), we see that these

eigenvectors capture the various resonant islands, and also the boundary between division

between the chaotic sea, and rest of the surface of section features. We extract the almost-

invariant structure based on the second eigenvector for four different θi values, and plot

the m in figure 4.25. While this is helpful in determining the macroscopic transport in the

PCR3BP, we do not find any new braiding structure using this approach. The braids formed

by components of various almost-invariant sets can be identified easily by just looking at the

motion of fixed points (saddles and centers) in the various Poincaré section. We conclude

that the almost-invariant set approach is not suited for the purposes on finding the braiding

structure for this problem.

Remarks on braiding in PCR3BP

We have presented an attempt to find pseudo-Anosov braids in the PCR3BP by constructing

Perron Frobenius operators on a family of two dimensional surface of section. The structure

revealed by various almost-invariant sets contructed via the eigenvectors of the operators do
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Figure 4.23: The discretization of the two dimensional section in 16000 boxes. The PF operator is

computed over the region shown in black, called the recurrent set.

not reveal any new information regarding the presence of any non trivial braids in the phase

space. We believe that the method of using a ensemble of random initial conditions and

finding random braids, as was mentioned in [54], may be better suited to this problem.
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(a) (b)
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Figure 4.24: Four eigenvectors corresponding to leading eigenvalues (< 1) of the reversibilized PF operator

M0. Compare with 4.20(a) and notice that these eigenvectors capture the various resonant islands.
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(a) (b)

(c) (d)

Figure 4.25: Almost invariant set structure extracted using the second eigenvector for (a) M0 (b) Mπ/2

(c) M5π/8 (d) M7π/8. The regions shown in green and blue have minimal transport amongst them.
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Chapter 5

Conclusion

In this thesis, we have applied geometric and statistical methods to

• Exploit structure in an intelligent way to achieve certain objectives using minimal but

effective control (Chapter 3).

• Find structure in a class of complex systems where there is an apparent loss of structure

due to perturbation in parameters (Chapter 4).

• Provide numerical evidence of applicability of topological techniques to a class of sys-

tems where it hasn’t been applied before (Chapter 4).

In chapter 3, our main contribution is the demonstration of the use of a family of controlled

Keplerian Maps in the Patched-Three-Body framework to design fuel efficient trajectories

with realistic flight times. This approach is a stepping stone towards automating the design

process of complicated missions such as multi-moon orbiters. We use analytically derived

symplectic maps that approximate the dynamics of PCR3BP and patch solutions in two

different PCR3BPs to form a trajectory in the the four-body planet-moon environment of

Jupiter-Europa-Ganymede-Spacecraft. We demonstrate that the use of intelligent control
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that takes full advantage of structure of the PCR3BP can lead to desirable trajectory char-

acteristics.

In chapter 4, our main contribution is the extension of the Thurston-Nielsen classification

theorem based framework to systems that do not have any easily discernible fixed points.

We use set-oriented transfer operator methods to find almost-invariant set structure in the

phase space of a lid-driven cavity flow system. We numerically demonstrate the validity of

the lower bound predicted by Thurston-Nielsen theorem based on braids formed by almost-

invariant-sets. We also demonstrate the phenomenon of braid-bifurcation, where the almost-

invariant-set structure consisting of 3 sets can be continued to generate almost-invariant sets

with topologically different braid structures consisting of 16, 13, 10 and 8 sets, each of which

give a good lower bound on the topological entropy of the flow in the regions where they

persist. This extension of the Thurston-Nielsen theory based framework to a more general

class of systems appears to be a very promising approach for analysis of complex systems

encountered in a wide variety of situations.
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Appendix

We give braid words for two pulses (i.e., one complete flow period) in each case. Here, σR

refers to first half of the time period and σL refers to second half. The complete braid word

for each braid is formed by composing the two words, i.e., σLσR.

• Braid on 3 strands.

σL = σ−1

σR = σ2

• Braid on 16 strands.

σL = σ12σ13σ12σ14σ13σ12σ15σ14σ13σ12σ−5σ−6σ−4σ−7σ−5σ−3σ−8σ−6σ−4σ−2

σ−9σ−7σ−5σ−3σ−1σ−8σ−6σ−4σ−2σ−7σ−5σ−3σ−6σ−4σ−5

σR = σ−4σ−3σ−4σ−2σ−3σ−4σ−1σ−2σ−3σ−4σ11σ10σ12σ9σ11σ13σ8σ10σ12σ14

σ7σ9σ11σ13σ15σ8σ10σ12σ14σ9σ11σ13σ10σ12σ11

• Braid on 13 strands.

σL = σ10σ11σ10σ12σ11σ10σ−4σ−5σ−3σ−6σ−4σ−2σ−7σ−5σ−3σ−1σ−6σ−4σ−2σ−5σ−3σ−4

σR = σ−3σ−2σ−3σ−1σ−2σ−3σ9σ8σ10σ7σ9σ11σ6σ8σ10σ12σ7σ9σ11σ8σ10σ9

• Braid on 10 strands.

σL = σ−3σ−4σ−2σ−5σ−3σ−1σ−4σ−2σ−3σ−1σ−2σ−1

σR = σ9σ8σ9σ7σ8σ6σ9σ7σ5σ8σ6σ7

• Braid on 8 strands.

σL = σ−1σ−3σ−4σ−2σ−3σ−1σ−2

σR = σ6σ7σ5σ6σ4σ5σ7
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