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ABSTRACT

The transport of material in geophysical fluid flows is a problem with important implications

for fields as diverse as: agriculture, aviation, human health, disaster response, and weather

forecasting. Due to the unsteady nature of geophysical flows, predicting how material will be

transported in these systems can often be challenging. Tools from dynamical systems theory

can help to improve the prediction of material transport by revealing important transport

structures. These transport structures reveal areas of the flow where fluid parcels, and thus

material transported by those parcels, are likely to converge or diverge. Typically, these

transport structures have been uncovered by the use of Lagrangian diagnostics. Unfortu-

nately, calculating Lagrangian diagnostics can often be time consuming and computationally

expensive.

Recently new Eulerian diagnostics have been developed. These diagnostics are faster and

less expensive to compute, while still revealing important transport structures in fluid flows.

Because Eulerian diagnostics are so new, there is still much about them and their connection

to Lagrangian diagnostics that is unknown. This dissertation will fill in some of this gap and

provide a mathematical bridge between Lagrangian and Eulerian diagnostics.

This dissertation is composed of three projects. These projects represent theoretical, nu-

merical, and experimental advances in the understanding of Eulerian diagnostics and their

relationship to Lagrangian diagnostics. The first project rigorously explores the deep math-

ematical relationship that exists between Eulerian and Lagrangian diagnostics. It proves

that some of the new Eulerian diagnostics are the limit of Lagrangian diagnostics as integra-



tion time of the velocity field goes to zero. Using this discovery, a new Eulerian diagnostic,

infinitesimal-time Lagrangian coherent structures is developed. The second project develops

a methodology for estimating local Eulerian diagnostics from wind velocity data measured

by a fixed-wing unmanned aircraft system (UAS) flying in circular arcs. Using a simulation

environment, it is shown that the Eulerian diagnostic estimates from UAS measurements

approximate the true local Eulerian diagnostics and can predict the passage of Lagrangian

diagnostics. The third project applies Eulerian diagnostics to experimental data of atmo-

spheric wind measurements. These are then compared to Eulerian diagnostics as calculated

from a numerical weather simulation to look for indications of Lagrangian diagnostics.
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GENERAL AUDIENCE ABSTRACT

How particles are moved by fluid flows, such as the oceanic currents and the atmospheric

winds, is a problem with important implications for fields as diverse as: agriculture, aviation,

human health, disaster response, and weather forecasting. Because these fluid flows tend

to change over time, predicting how particles will be moved by these flows can often be

challenging. Fortunately, mathematical tools exist which can reveal important geometric

features in these flows. These geometric features can help us to visualize regions where

particles are likely to come together or spread apart, as they are moved by the flow. In

the past, these geometric features have been uncovered by using methods which look at

the trajectories of particles in the flow. These methods are referred to as Lagrangian, in

honor of the Italian mathematician Joseph-Louis Lagrange. Unfortunately, calculating the

trajectories of particles can be a time consuming and computationally expensive process.

Recently, new methods have been developed which look at how the speed of the flow changes

in space. These new methods are referred to as Eulerian, in honor of the Swiss mathematician

Leonhard Euler. These new Eulerian methods are faster and less expensive to calculate, while

still revealing important geometric features within the flow. Because these Eulerian methods

are so new, there is still much that we do not know about them and their connection to the

older Lagrangian methods. This dissertation will fill in some of this gap and provide a

mathematical bridge between these two methodologies.

This dissertation is composed of three projects. These projects represent theoretical, nu-

merical, and experimental advances in the understanding of these new Eulerian methods



and their relationship to the older Lagrangian methods. The first project explores the deep

mathematical relationship that exists between Eulerian and Lagrangian diagnostic tools. It

mathematically proves that some of the new Eulerian diagnostics are the limit of Lagrangian

diagnostics as the trajectory’s integration times is decreased to zero. Taking advantage of

this discovery, a new Eulerian diagnostic is developed, called infinitesimal-time Lagrangian

coherent structures. The second project develops a technique for estimating local Eulerian

diagnostics using wind speed measures from a single fixed-wing unmanned aircraft system

(UAS) flying in a circular path. Using computer simulations, we show that the Eulerian

diagnostics as calculated from UAS measurements provide a reasonable estimate of the true

local Eulerian diagnostics. Furthermore, we show that these Eulerian diagnostics can be

used to estimate the local Lagrangian diagnostics. The third project applies these Eulerian

diagnostics to real-world wind speed measurements. These results are then compared to

Eulerian diagnostics that were calculated from a computer simulation to look for indications

of Lagrangian diagnostics.
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Chapter 1

Introduction

1.1 Background

The transport of material in geophysical fluid flows is a problem with important implications

for fields as diverse as: agriculture [1, 2, 3, 4], aviation [5, 6], human health [7, 8], disaster

response [9, 10], and weather forecasting [11]. Due to the unsteady nature of geophysical

flows, predicting how material will be transported in these systems can often be challenging.

Tools from dynamical systems theory can help to improve the prediction of material transport

by revealing important transport structures. These transport structures reveal areas of the

flow where fluid parcels, and thus material transported by those parcels, are likely to converge

or diverge. A demonstration of this can be seen in figure 1.1. The top image shows the wind

velocity field along the 925 mb pressure surface from a simulation of the global atmosphere.

Looking at this image, it is difficult to predict how material advected by this flow will spread.

The bottom image shows this flow’s backward-time finite-time Lyapunov exponent (FTLE)

field, for an integration period of 24 hr. The transport structures of this flow show up in

yellow, it is these yellow regions where material will likely converge over the subsequent 24

1
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hr period.

Figure 1.1: Top: Wind velocity field along 925 mb pressure surface from a simulation of the
global atmosphere, approximately 760 m above sea level. Bottom: Backward-time FTLE
field, with an integration time of 24 hr. Regions in yellow are where fluid parcels are most
likely to converge over the next 24 hr.

The diagnostics used to locate these transport structures have historically been Lagrangian

in nature, such as FTLE and Lagrangian coherent structures (LCSs). The FTLE provides

a measure of how much fluid parcels stretch over an integration period. LCSs, on the other

hand, are co-dimension 1 material surfaces which represent the material lines where fluid
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parcel stretching is maximized; as such they are often identified as ridge-lines of the FTLE

field. Being Lagrangian, these tools require the integration of fluid parcel trajectories. This

reliance on trajectory integration makes Lagrangian diagnostics time consuming to calcu-

late and computationally expensive. Additionally, the accurate integration of fluid parcel

trajectories requires a velocity field which is sufficiently resolved in both time and space.

While this requirement is not a major obstacle for the analysis of ocean surface flows, due to

velocity measurements from devices such as high frequency radar and satellites, it is prob-

lematic for atmospheric and subsurface oceanic flows. This means that the analysis of these

flows rely on the use of velocity fields from numerical models. Numerical models themselves

take time to compute, which limits their usefulness in real-time applications. Additionally,

numerical models can be computationally expensive, may not accurately capture sub-grid

scale phenomena, and at best are still an approximation of the true situation.

Over the past few years new Eulerian diagnostics, such as objective Eulerian coherent struc-

tures (OECS) [12] and the trajectory divergence rate [13], have been developed. These

Eulerian diagnostics are based on gradients of the velocity field, rather than fluid parcel

trajectories. As such, Eulerian diagnostics are faster to compute and less computationally

expensive. Furthermore, as will be shown in chapter 4, these diagnostics can be calculated

from velocity data at as few as n+ 1 points in an n-dimensional space and 1 point in time.

This makes them easy to calculate from experimental measurements of geophysical flows,

such as those in the atmosphere.

Due to their relative novelty, there is still much that is unknown about the relationship be-

tween Eulerian and Lagrangian diagnostics. It is at this interface of Eulerian and Lagrangian

analysis that this dissertation makes an impact. In particular this dissertation will:

• prove rigorous mathematical connections between Lagrangian and Eulerian diagnostics

for n-dimensional systems,
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• formulate a new Eulerian diagnostic, the infinitesimal-time LCS (iLCS),

• explore the ability of Eulerian diagnostics to detect Lagrangian dynamics,

• develop a new method to measure local Eulerian diagnostics using a single fixed-wing

unmanned aircraft system (UAS),

• apply new Eulerian diagnostics to real-world experimental data, combining UAS and

ground-based measurements, to look for indications of LCSs.

These developments are presented over the course of three chapters. These chapters can be

thought of as representing theoretical, numerical, and experimental advances in the field of

dynamical systems theory, focusing on the relationship between Eulerian and Lagrangian di-

agnostics. Each of these three chapters has either been published, submitted for publication,

or is currently in preparation for journal submission.

1.2 Governing equations

This dissertation examines the dynamical system,

d

dt
x(t) = v(x(t), t), (1.1)

x0 = x(t0), (1.2)

x(t) ∈Rn, t ∈ R, (1.3)

where x(t) is the position of a fluid parcel at time t, v(x(t), t) is the velocity of the fluid flow

at position x(t) at time t, and R is the set of real numbers.
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Analysis of this system by Lagrangian methods begins with calculating the flow map,

Ft
t0

(x0) = x0 +

∫ t

t0

v(x(t), t) dt. (1.4)

Taking the gradient of the flow map, the right Cauchy-Green strain tensor is then calculated,

Ct
t0

(x0) = ∇Ft
t0

(x0)T · ∇Ft
t0

(x0), (1.5)

with ordered eigenvalues, λ1 < ... < λn, each of which is associated with a normalized

eigenvector, ξλi , i ∈ [1, n]. From the largest eigenvalue of the right Cauchy-Green strain

tensor, λn, the FTLE field is derived,

σtt0(x0) =
1

2|t− t0|
log (λn(x0)) . (1.6)

Ridges of this field can then be identified as LCSs. While there are different mathematical

definitions for what constitutes a ridge, a ridge-line can be thought of as the generalization of

the concept of a local maxima. Following [14], this dissertation identifies LCSs as C-ridges of

the FTLE field. C-ridges are ridge-lines of the FTLE which are orthogonal to the direction

of maximal stretching. Mathematically, they are defined as,

σ > 0, (1.7)

∇σ · ξλn = 0, (1.8)

(Hσ · ξλn) · ξλn < 0, (1.9)

where Hσ is the Hessian matrix of the FTLE field. C-ridges are advantageous over other

forms of FTLE ridges, as they only rely on invariants of the Cauchy-Green strain tensor and

were shown in [14] to be equivalent to the variational definition hyperbolic LCSs described
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in [15].

The main contributions of this dissertation are based the use of Eulerian methods and the

connection between Eulerian and Lagrangian diagnostics. These Eulerian methods derive

primarily from the Eulerian rate-of-strain tensor,

S(x0, t0) =
1

2

(
∇v(x0, t0) +∇v(x0, t0)T

)
, (1.10)

with ordered eigenvalues s1 < ... < sn. The minimum eigenvalue, s1, is the attraction rate;

while the maximum, sn, is the repulsion rate.

1.3 Research overview

This dissertation presents the results of three research projects over the course of three

chapters. These chapters each advance the understanding of material transport in a distinct

way.

Chapter 2 is largely a theoretical work, with some numerics. This chapter builds a mathe-

matical bridge between traditional Lagrangian diagnostics and newer Eulerian diagnostics.

It lays out rigorous mathematical proofs which show that the attraction rate is the limit of

the backward-time FTLE and the repulsion rate is the limit of the forward-time FTLE as the

integration time goes to zero. Building upon this discovery, a new Eulerian diagnostic, iLCS,

is formulated. In addition to this, equations for higher order approximations to the FTLE

are derived using Taylor series expansions and Rivlin-Ericksen tensors. These advances are

then applied to a series of examples, including standard analytical models used in the LCS

literature, a realistic geophysical flow, and two 3-dimensional analytic flows. This chapter

is currently being prepared for journal submission to either Chaos, PhysicaD, or Nonlinear
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Dynamics.

Chapter 3 is mostly a numerical work. This chapter lays the groundwork for being able to

detect LCSs from a single fixed-wing UAS. Towards this end, a new algorithm is developed

which calculates the gradient of a scalar field from measurements taken along a circular

arc. An observing system simulation experiment (OSSE) is then conducted to determine if

it is possible to use wind velocity measurements from a circling UAS to approximate local

Eulerian diagnostics at the center-point of the UAS orbit. After this, a parametric study is

performed to determine if it is possible to utilize Eulerian diagnostics to infer Lagrangian

dynamics. Finally, these two ideas are combined to see if is possible to infer local Lagrangian

dynamics from UAS measurements. This chapter has been submitted to the journal Sensors

for publication.

Chapter 4 is an analysis of experimental measurements and numerical models. Over the

summer of 2018, an experimental campaign was conducted in the San Luis Valley, Co, in as-

sociation with the with the International Society for Atmospheric Research using Remotely-

Piloted Aircraft conference [16], where UASs and ground-based sensors were used to measure

local atmospheric conditions. During this campaign several missions were conducted which

simultaneously measured the atmospheric velocity at three points. From these measure-

ments, the gradient of the local atmospheric velocity is able to be approximated. This then

allows for the calculation of the Eulerian rate-of-strain tensor and hence Eulerian diagnostics.

These calculations are then compared to Eulerian diagnostics computed from a numerical

atmospheric fluid model of the San Luis Valley in order to look for signs of LCSs. This

chapter has been published in the journal Sensors [17].



8 Chapter 1. Introduction

1.4 Research not covered in this dissertation

This section presents an overview of the projects that have been pursued over the past

four years, but did not become a core component of this dissertation. Some these projects

morphed into projects that did become central to this dissertation, others were passed over

in favor of more productive lines of research, and still others, while fruitful, were simply

beyond the scope of this dissertation. However, all these projects are worth mentioning and

have contributed to the institutional knowledge of Ross Dynamics Lab.

1.4.1 3D atmospheric Lagrangian coherent structures

The study of 3D atmospheric LCSs was originally intended to be a rather significant portion

of this dissertation. Many months were spent learning how to setup and run the realistic

Weather Research and Forecasting (WRF) model [18]. Unfortunately, the challenges of

accurately fine tuning a model with scores of parameters were beyond the scope of current

lab research. In its place, the output from other models were used, such as the North

American Mesoscale (NAM) WRF model, which had been used in previous lab research.

Additionally, model results provided by more experienced atmospheric modelers, such as Dr.

Hosein Foroutan at Virginia Tech and Nevio Babic and Ross Palomaki at the De Wekker lab

at the University of Virginia, have also been used. Still, this line of research produced many

interesting results. Analysis of the 3D backward-time FTLE field from a convective boundary

layer (CBL) simulation showed that LCSs can likely be used to track the entrainment of

material from ground level into the atmosphere. This can be seen in animations FTLE

field video and FTLE isosurface video, stills of these animations can be found in figures 1.2

and 1.3. These animations show that regions of elevated FTLE values tend to be advected

upward. These elevated FTLE values are likely associated with convective plums. Looking

https://www.youtube.com/watch?v=mTmdv-Kvz7Y
https://www.youtube.com/watch?v=mTmdv-Kvz7Y
https://www.youtube.com/watch?v=9FEBGTPSmio
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at the statistics of the 3D backward-time FTLE field, figure 1.4, showed that there were

clear elevations of FTLE values at the top and bottom of the CBL. This suggests that fluid

parcels can be expected to converge towards either the ground or the top of the CBL. An

animation of these FTLE statistics along with the variance of the velocity field can be found

at FTLE statistics video. Additionally, figure 1.5 shows the intersection of attracting and

repelling 3D LCSs, highlighting saddle-point-like behavior in the CBL. An animation of this

intersection can be found at LCS saddle video. Note how the LCSs and tracers converge to

the top of the CBL over time. This line of research culminated in the fall of 2018, with the

extraction of 2-dimensional attracting LCSs using wind velocity data from a portion of the

NAM model over Blacksburg VA. This result can be found in figure 1.6, which shows both

horizontal and vertical LCSs. Previous work had typically assumed atmospheric LCSs would

be vertical structures due to the horizontal wind components being two orders of magnitude

greater than the vertical wind component, on average.

In addition to these results, studying the mathematics of 3D LCSs directly lead to the

formulation of iLCS during the summer of 2018. This was done by applying methodology of

n-dimensional LCSs to Eulerian diagnostics first began in [12]. iLCS form a prominent part

of this dissertation and are discussed in chapter 2.

This 3D LCS research resulted in a talk at the 2017 SIAM Conference on Applications of

Dynamical Systems [19].

1.4.2 Detection of atmospheric Lagrangian coherent structures

via sonic detection and ranging

The detection of LCSs from experimental data has been a focus of research since starting

in the Ross Dynamics Lab. Earlier on, access to sonic detection and ranging (SoDAR) data

https://www.youtube.com/watch?v=FgV-ltVDd0w
https://www.youtube.com/watch?v=NflrLXB6Gbc
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Figure 1.2: 3D backward-time FTLE field from a CBL simulation. Colorbar has units
of s−1. An animation of this flow can be found at https://www.youtube.com/watch?v=

mTmdv-Kvz7Y.

led to the idea of using multiple SoDAR units to measure a volumetric 3D velocity field.

These velocity measurements would then be analyzed to attempt to detect the passage of

LCSs through the sampling area. Due to a limited number of available SoDAR devices,

the decision was made to explore whether a single SoDAR could be be used to detect LCSs

passing through the sampling area. This idea was tested using a WRF large eddy simulation

(LES). A simulated SoDAR model was formulated which took a 1-dimensional velocity profile

from the WRF-LES and assumed horizontal homogeneity (i.e., the wind velocity was not

changing in the horizontal plane). This was then used to calculate an FTLE field.

Results from these efforts seemed to suggest that a single SoDAR might indeed be used to

detect LCSs. This can be seen in figure 1.7, which shows the results of a simulated SoDAR

numerical experiment. The left hand side shows a time series of the FTLE field as calculated

from velocity measurements performed by a simulated SoDAR. The right hand side shows

https://www.youtube.com/watch?v=mTmdv-Kvz7Y
https://www.youtube.com/watch?v=mTmdv-Kvz7Y
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Figure 1.3: Isosurfaces of a 3D backward-time FTLE field from a CBL simulation. Colorbar
has units of s−1. An animation of this flow can be found at https://www.youtube.com/

watch?v=9FEBGTPSmio.

FTLE isosurfaces as calculated from the fully 3-dimensional velocity field. The magenta dot

highlights an elevated FTLE value that appears in both the SoDAR model and the fully

3D FTLE field. This correspondence seems to suggest that velocity measurements from a

1-dimensional profile, such as those of a SoDAR or light detection and ranging (LiDAR)

device, can be used to detect LCSs.

This line of research was eclipsed by research utilizing UASs to detect LCSs. While platforms

such as SoDAR and LiDAR are a useful for platform for making continuous measurements

of the wind at a given location, UASs are a less expensive, more portable, and more readily

available platform. Work on detecting LCSs from wind measurements performed by UASs

can be found in chapters 3 and 4.

https://www.youtube.com/watch?v=9FEBGTPSmio
https://www.youtube.com/watch?v=9FEBGTPSmio
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Figure 1.4: Mean and standard devation of a 3D backward-time FTLE field from a CBL
simulation. The variance of the velocity component fields are shown as well. An animation
of this figure can be found at https://www.youtube.com/watch?v=FgV-ltVDd0w.

1.4.3 Lagrangian coherent structures and pollution transport

Work on the study of LCSs and their ability to predict the transportation of pollution in

the atmosphere began in the summer of 2017. Dr. William Vance at the California Air

Resources Board (CARB) contacted the Ross Dynamics Lab to analyze a pollution event

that had happened the previous year. In June 2016, an elevated level of ozone was detected

near the city of Visalia in the San Joaquin Valley, California. It was speculated that the

ozone had been transported to California from forest fires in Asia. CARB was interested to

see if LCSs had played any roll in the ozone’s transport. The velocity field of the 800 mb

pressure surface from a NAM simulation of that time period was analyzed. While there were

LCSs present over the San Joaquin Valley during that time span, it did not appear that they

were associated with the elevated ozone measurements. However, during this analysis an

interesting intersection of attracting and repelling LCSs was noticed over the San Francisco

https://www.youtube.com/watch?v=FgV-ltVDd0w
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Figure 1.5: Intersection of an attracting (blue) LCS and a repelling (red) LCS from a CBL
simulation. A blob of passive tracers in shown in green. An animation of these structures
can be found at https://www.youtube.com/watch?v=NflrLXB6Gbc.

Bay Area, figure 1.8. Investigating this feature more deeply revealed that it had originated

over the Pacific Ocean and eventually wound up entangled in the Sierra Nevada mountains.

An interesting observation from this study is that LCSs start off as ordinary material surfaces

advecting with the flow. While they advect with the flow, there comes a point where these

material surfaces appear to activate; the attracting LCSs begin to attract particles and the

repelling LCSs begin to repel particles. After some time has passed, these material surfaces

then deactivate (i.e. they cease to attract or repel) and revert to passively advecting with

the flow. An animation of this activation and deactivation can be seen at California saddle

video. While this particular line of research did not lead to much, it did set the stage for the

research the role of LCSs in the transport of atmospheric species using more sophisticated

techniques.

A key strength of LCSs are their ability to predict how material advected by a geophysical

fluid flow will be transported [5, 9]. However, visualizing these structures can be challenging

https://www.youtube.com/watch?v=NflrLXB6Gbc
https://www.youtube.com/watch?v=fci3rOchMxw
https://www.youtube.com/watch?v=fci3rOchMxw
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Figure 1.6: 3D atmospheric attracting LCSs above Blacksblack VA. This image shows that
3D atmospheric LCSs come in both horizontal and vertical structures. Note that the y axis
corresponds to North, and the x axis to East.

in systems with n > 2 dimensions, such as the atmosphere. This can make predicting

how material in a flow, such as species in the atmosphere, will advect more difficult. One

solution to this problem was presented in [11], which used a material-weighted vertically

averaged velocity field to analyze atmospheric rivers; this turned a 3-dimensional problem

into a 2-dimensional problem. This velocity field can be written as,

v =
1∫ 1

0
q ∂p
∂η
dη

∫ 1

0
uq ∂p

∂η
dη∫ 1

0
vq ∂p

∂η
dη

 (1.11)

where η is a hybrid vertical coordinate, p is the pressure level, u is the eastward wind velocity,
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Figure 1.7: Results from numerical SoDAR experiments. Left: The FTLE profile calculated
from 1D SoDAR model taken from a 3D WRF-LES. Right: The FTLE isosurfaces calculated
from full 3D velocity field. Blue line simulated SoDAR sampling profile. Both colorbars have
units s−1.

v is the northward wind velocity, and q is the material concentration at the pressure level p.

This has inspired new research looking at different atmospheric species in the place of water

vapor. Thus far, the research on this topic has been promising. There have already been

seven types of atmospheric species examined, including the three in figure 1.9. Transport

structures of these seven species have been calculated for integration periods of 0, -1, and -6

hours. These structures were then compared to those of the 100 m wind field. While some

species, such as water vapor, appear to have transport structures similar to that of the 100

m wind field, many have very different and unique structures. One such example is ozone,

shown in figure 1.9(D), whose unique structures are due to having sources both near ground

(e.g., urban air pollution) and high in the atmosphere (e.g. the ozone layer).

While still more work needs to be done, this research has already led to a poster at the 17th

Annual Community Modeling and Analysis System Conference [20]. Additionally, results

from this research will be presented at the upcoming 2019 SIAM Conference on Applications
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Figure 1.8: An intersection of attracting (blue) and repelling (red) LCSs over the San
Francisco Bay Area, California. Passive tracers are shown in green. An animation of
this figure, showing the saddle-point-like behavior of this intersection can be seen at
https://www.youtube.com/watch?v=fci3rOchMxw.

of Dynamical Systems and will be submitted for journal publication.

1.4.4 Hybrid Lagrangian coherent structures

Typically, when calculating Lagrangian diagnostics for a geophysical system, v is the velocity

of either the atmospheric winds or the oceanic currents. However, objects that exist at the

interface of these fluids, such as ships, oil spills, persons in water, airplane debris, etc., are

not exclusively transported by either of these two vector fields. In these situations a hybrid

velocity field can be used to improve predictions of material transport [21]. This hybrid

https://www.youtube.com/watch?v=fci3rOchMxw
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Figure 1.9: Comparison of -1 hr backward-time FTLE fields for different atmospheric species:
A) horizontal wind, B) water vapor, C) nitrogen dioxide, D) ozone. The horizontal wind
velocity field is taken from a horizontal level ∼100 m above ground level. The other three
species are calculated based on column-averaged and species-weighted horizontal wind vector
components. All four species have their own unique structures (yellow) where fluid parcels
will converge.

velocity field can be written as,

v(x(t), t) = v(x(t), t)ocean + Cwv(x(t), t)wind, (1.12)

where v(x(t), t)wind is the wind speed at 10 m and Cw is the windage coefficient. The windage

coefficient is a result of how large an object is, how much of it is acted on by the 10 m wind

field and other physical characteristics [21].

Numerical and experiment work on this topic was done over the summer of 2018 in support
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of the NSF ALPHA project [22]. This project used oceanic and atmospheric model data

to calculate LCSs for ocean surface and hybrid velocity fields. Following [23], the windage

coefficient for the hybrid field was set to 0.019 in order to model a person-in-water. The

LCSs and tracers were then advected under equation 1.12. This was done to see if there was

a noticeable difference between behavior of the oceanic and the hybrid flows. In addition

to this, experimental work using partially submerged manakins and pure ocean drifters was

performed off the coast of Martha’s Vineyard Massachusetts. While more analysis is needed,

earlier results suggest that windage does make a noticeable difference; this is in agreement

with the findings of [21]. Results from a simulation south of Martha’s Vineyard can be seen

in figure 1.11.

The results of this project are currently in preparation for journal submission.

Figure 1.10: Comparison of an ocean LCS (red and yellow) and a hybrid LCS (blue and
green) with a windage coefficient of 0.019 (the same windage coefficient as a person-in-
water), south of Martha’s Vineyard, Massachusetts. It can be seen that tracers that are
advected under the ocean current (orange) converge to the ocean LCS; while the tracers
advected under the hybrid velocity field (cyan) converge to the hybrid LCS.
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1.4.5 Trajectory divergence rate

The trajectory divergence rate grew out of the study of variational LCSs. It was developed

as an instantaneous rate-of-change of the so called “repulsion rate” discussed in [15]. As

an instantaneous rate-of-change, it provides a simultaneous measure of both attraction and

repulsion in a fluid flow, or general n-dimensional vector field. The trajectory divergence

rate is defined as,

ρ̇(x0, t0) = n̂(x0, t0)T · S(x0, t0) · n̂(x0, t0)

=

(
v(x0, t0)T · JT · S(x0, t0) · J · v(x0, t0)

)
||v(x0, t0)||2 ,

(1.13)

where S(x0, t0) is the Eulerian rate-of-strain tensor, n̂(x0, t0) is the unit vector normal to

the trajectory and J is the symplectic matrix, J = [ 0 1
−1 0 ][13]. Areas where the trajectory

divergence rate is > 0 are where streamlines diverge; areas where the trajectory divergence

rate is < 0 are where streamlines converge.

Providing a metric of both attraction and repulsion in one scalar field makes the trajectory

divergence rate a powerful tool for the analysis of dynamical systems. It has shown itself to

be useful in the detection of slow manifolds and limit cycles. However, as shall be shown in

chapter 3, it may not be the best diagnostic tool for the detection of LCSs in fluid flows.

While sensing the trajectory divergence rate from a UAS and using it to detect LCSs are

explored in chapter 3, the theory behind it and the general applications of the trajectory

divergence rate are not discussed. However, they can be found in [13].

This work contributed to one paper [13], published in Nonlinear Dynamics, and was influ-

ential on chapter 3 of this dissertation.
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Figure 1.11: Left: depiction of the trajectory divergence rate along with streamlines from an
MSEAS model [24] simulation of the oceanic flow around Martha’s Vineyard, Massachusetts.
Areas in blue show where streamlines converge, while areas in orange show where streamlines
diverge. Right: attracting LCSs (blue) and repelling LCSs (red) for an integration time of 2
hr are shown atop the trajectory divergence rate field. The inset plot shows the trajectory
divergence rate along 41.3◦N latitude from 70.6◦W to 70.3◦W, marked by the points A and
B. Places where LCSs cross this latitude between A and B are shown as lines colored red
for repelling and blue for attracting. Notice how the repelling LCSs tend to correspond to
peaks in the trajectory divergence rate; while attracting LCSs correspond to troughs. This
image was published in [13].

1.4.6 Reduced order modeling

One of the earlier topics considered for this dissertation was the application of Lagrangian

diagnostics to the improvement of reduced order models (ROMs). Traditional direct nu-

merical simulation (DNS) models can produce highly accurate results, however these results

can be time consuming to calculate and computationally expensive. This has lead to the

development of ROMs. ROMs approximate the solution to a system by sampling DNS solu-

tions and decomposing those solutions, with respect to some metric, to generate new basis

functions. These new basis functions vary in space and have unknown coefficients which

vary in time. This creates a new autonomous ordinary differential equation which is less
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computationally expensive and time consuming to solve.

In the past, ROMs have been Eulerian based, typically applying a metric, such as the L2

norm, to an Eulerian quantity, such as the vorticity field. The idea to include Lagrangian

information when generating a ROM was spurred by the development of a new inner product,

which incorporates Lagrangian information. This inner product is

((ω1, σ1) , (ω2, σ2))FTLE =

∫
Ω

(ω1(x)ω2(x) + ασ1(x)σ2(x)) dx, (1.14)

where the ωi’s are vorticity fields, the σi’s are FTLE fields, and α is a weighting parameter.

To study the effectiveness of the Lagrangian ROM at reproducing Lagrangian information,

a parametric study was performed using the quasi-geostrophic flow. This study looked at

how well the ROM was able to reproduce the FTLE field generated by the DNS for different

values of α. The value of α was varied from 0 to 104. This study found that not only does the

Lagrangian ROM outperform the Eulerian ROM, but that there may be an optimal value of

α.

This research resulted in one paper [25], currently under review at the International Journal

for Numerical Methods in Fluids, and an NSF grant [26].
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Chapter 2

Finite-time Lyapunov exponent field

in the infinitesimal time limit

Attribution

This manuscript represents a collaborative work with Shane D. Ross which is currently in

preparation for submission to either Chaos, PhysicaD, or Nonlinear Dynamics.

Abstract

Lagrangian diagnostics, such as the finite-time Lyapunov exponent and Lagrangian coherent

structures, have become popular tools for analyzing unsteady fluid flows. These diagnostics

can help illuminate regions where fluid parcels transported by a flow will converge to and

diverge from. Unfortunately, calculating Lagrangian diagnostics can be time consuming and

computationally expensive. Recently new Eulerian diagnostics, such as objective Eulerian

26
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coherent structures and the trajectory divergence rate, have been developed which are faster

and less expensive to compute. Because Eulerian diagnostics are so new, there is still much

about their connection to Lagrangian diagnostics that is unknown. This manuscript will pro-

vide a mathematical bridge between Lagrangian and Eulerian diagnostics. It will rigorously

explore the deep mathematical relationship that exists between invariants of the Cauchy-

Green strain tensor and the Eulerian rate-of-strain tensor in the infinitesimal time limit.

Additionally, this manuscript will develop a new Eulerian diagnostic, infinitesimal-time La-

grangian coherent structures, and show its efficacy in predicting the Lagrangian transport

of fluid parcels.

2.1 Introduction

Lagrangian diagnostics, such as the finite-time Lyapunov exponent (FTLE) and Lagrangian

coherent structures, have become a popular means of analyzing unsteady fluid flows [1, 2, 3,

4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. These diagnostics can help to predict how particles will

spread in a fluid flow over a time interval of interest, as well as which areas of the flow will

undergo the greatest and least amounts of stretching. However, Lagrangian methods rely on

the integration of particle trajectories; this can make them computationally expensive and

time consuming to calculate. Furthermore, the integration of particle trajectories requires

a velocity field which is sufficiently resolved in both time and space in order to accurately

calculate the particle’s motion. This limits the ability of researchers to compute Lagrangian

diagnostics from geophysical data, such as wind measurements, requiring the use of computer

generated models instead. Unfortunately, model data itself takes time to generate, limiting

its usefulness for real-time applications, such as a hazardous incident (e.g. a radioactive gas

leak or an oil spill). Furthermore, even when model data is readily available it may not be
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completely reliable. Thus new methods of analyzing unsteady fluid flows are required.

Recent Eulerian diagnostics, such as objective Eulerian coherent structures (OECS) [16],

the trajectory divergence rate [17], and the attraction and repulsion rates [18], have been

developed to analyze unsteady fluid flows. These diagnostics are derived from the Eulerian

rate-of-strain tensor, which is calculated from gradients of the velocity field. This allows for

dynamical systems to be analyzed without the need for particle integration, which reduces

the amount of time and computational power, necessary to calculate. Furthermore, being

based on gradients, these diagnostics can be calculated from measurements at as few as

n+ 1 points in an n dimensional space, and 1 point in time. For example [18] calculated the

attracting rate field in 2D using only 3 points in space.

This manuscript will build upon earlier work and lay a rigorous foundation which proves

deep mathematical connections between the traditional Lagrangian diagnostics and the new

Eulerian diagnostics. In addition to this, higher order Eulerian approximations to the FTLE

field than those currently available will be derived, for short integration times. Building upon

these proofs a new Eulerian diagnostic tool will be defined, infinitesimal-time LCS (iLCS).

iLCSs will be shown to be the limit of LCSs as integration time goes to 0. Note that these

proofs and iLCSs are generalized for n dimensional systems.

This manuscript is organized as follows. Section 2.2 gives information on the dynamical

system that will be examined, along with the various notion. Section 2.3 provides a rigorous

mathematical connection between invariants of the Eulerian rate-of-strain tensor and tra-

ditional Lagrangian diagnostics including the FTLE field and the eigenvectors of the right

Cauchy-Green strain tensor. Section 2.4 derives a new Eulerian diagnostic, iLCSs, as the

limit of LCSs as the integration time goes to 0. Then section 2.5 provides numerous examples,

comparing the error of Eulerian approximation, demonstrating the effectiveness of iLCSs,

and comparing the attraction rate field to the FTLE field. Finally, section 2.6 concludes the
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manuscript.

2.2 Setup and Notation

Consider the dynamical system

d

dt
x(t) = v(x(t), t), (2.1)

x0 = x(t0), (2.2)

x ∈Rn, t ∈ R. (2.3)

This system can be analyzed using Lagrangian methods, by first calculating the flow map

for some time period of interest, [t0, t]. The flow map is given by,

Ft
t0

(x0) = x0 +

∫ t

t0

v(x(t), t) dt. (2.4)

Taking the gradient of the flow map, the right Cauchy-Green strain tensor for the time period

of interest can be calculated,

Ct
t0

(x0) = ∇Ft
t0

(x0)T · ∇Ft
t0

(x0), (2.5)

the eigenvalues of which are

λ1 < λ2 < ... < λn, (2.6)

and are associated with the normalized eigenvectors

ξλi i ∈ {1, . . . , n}. (2.7)



30
Chapter 2. Finite-time Lyapunov exponent field in the infinitesimal time

limit

From the maximum eigenvalue of the Cauchy-Green tensor the FTLE can be calculated,

σtt0(x0) =
1

2|T | log(λn) (2.8)

where T = t − t0 is the (signed) elapsed time, often called the integration time. Recent

advances in dynamical systems theory have developed new Eulerian methods to analyze this

system based on the the Eulerian rate-of-strain tenors. The Eulerian rate-of-strain tensor is

defined as

S(x, t) = 1
2

(
∇v(x, t) +∇v(x, t)T

)
, (2.9)

the eigenvalues of which are

s1 < s2 < ... < sn, (2.10)

and are associated with the normalized eigenvectors

ξsi i ∈ {1, . . . , n}. (2.11)

From the eigenvalues of the Eulerian rate-of-strain tensor one can identify regions of the flow

which are more attracting and repelling.

For two dimensional systems, [16] showed that the minimum eigenvalue, s1, provides a

measure of instantaneous hyperbolic attraction; with isolated minimas forming the cores of

attracting OECS. Meanwhile, the maximum eigenvalue, s2, was shown to provide a measure

of instantaneous hyperbolic repulsion; with isolated maximas of forming the cores of repelling

OECS. Furthermore, in [18] s1 was identified as the attraction rate and was used to look

for indications of attracting LCSs. While s2 was identified as the repulsion rate. This

nomenclature will be used in this manuscript as well, with sn replacing s2.
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2.3 Expansion of the Cauchy-Green tensor in the in-

finitesimal integration time limit

2.3.1 Eigenvalues of S as FTLE limit as integration time goes to

zero

For small |T |, we can perform a Taylor series expansion of Ct
t0

(x) as

Ct
t0

(x) = 1+ 2TS(x, t0) + T 2B(x, t0) + 1
2
T 3Q(x, t0) +O(T 4), (2.12)

where 1 is the n× n identity and where

B(x, t0) ≡ 1

2

[
∇a(x, t0) +

(
∇a(x, t0)

)T]
+∇v(x, t0)T · ∇v(x, t0), (2.13)

where the acceleration field, a(x, t0), is

a(x, t0) =
d

dt
v(x, t0) =

∂

∂t
v(x, t0) + v(x, t0) · ∇v(x, t0) (2.14)

is the total time derivative of v(x, t0), that is, the acceleration measured along a trajectory

(i.e., in a Lagrangian frame). The matrix Q is given in the appendix.

We note the following general result for the eigenvalues,

λ−(A) = λ1(A) ≤ ... ≤ λn(A) = λ+(A), (2.15)
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of n× n real symmetric matrices A and scalar ε 6= 0. The formula is,

λ±(1+ εA) = 1 + λ±(εA) (2.16)

where

λ±(εA) =


ελ±(A), for ε > 0

ελ∓(A), for ε < 0

(2.17)

See the appendix for the proof.

In (2.8), λn = λ+(Ct
t0

(x)). For small T > 0, where we can neglect the O(T 2) and higher

terms, we have

λ+(Ct
t0

(x)) = 1 + 2Tλ+(S(x, t0)) +O(T 2) (2.18)

Thus,

log(λn) = log(1 + 2Tλ+(S(x, t0))) = 2Tλ+(S(x, t0)) = 2Tsn(x, t0) (2.19)

in the limit of small T using the Taylor expansion log(1 + ε) = ε+O(ε2).

From (2.8), and noting that |T | = T for T > 0, we have,

σtt0(x) =
1

2|T | log(λn) =
1

2T
2Tsn(x, t0) = sn(x, t0) (2.20)

Therefore, the maximum eigenvalue of S(x, t0) is the limit of the FTLE value for forward

time as T → 0+.

For T < 0 with small T , we have

λ+(Ct
t0

(x)) = 1 + 2Tλ−(S(x, t0)) +O(T 2) (2.21)
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Thus,

log(λn) = 2Tλ−(S(x, t0)) = 2Ts1(x, t0) (2.22)

From (2.8), and noting that |T | = −T for T < 0, we have,

σtt0(x) =
1

2|T | log(λn) = − 1

2T
2Ts1(x, t0) = −s1(x, t0) (2.23)

Therefore, the negative of the minimum eigenvalue of S(x, t0) is the limit of the FTLE value

for backward time as T → 0−.

If we denote s1 and sn as s− and s+, respectively, we can summarize the above result as

σtt0(x) = ±s±(x, t0) as t− t0 → 0± (2.24)

For the n = 2 dimensional case with x = (x, y) with the vector field denoted v = (u, v), the

velocity gradient tensor is given explicitly as,

∇v =

∂u∂x ∂u
∂y

∂v
∂x

∂v
∂y

 , (2.25)

with the Eulerian rate-of-strain tensor,

S =

 ∂u
∂x

1
2

(
∂u
∂y

+ ∂v
∂x

)
1
2

(
∂u
∂y

+ ∂v
∂x

)
∂v
∂y

 . (2.26)

The instantaneous attraction and repulsion rate, s− and s+, respectively, are then given
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analytically by

s±(x) = 1
2

(
∂u
∂x

+ ∂v
∂y

)
± 1

2

√(
∂u
∂x
− ∂v

∂y

)2

+
(
∂u
∂y

+ ∂v
∂x

)2

. (2.27)

If v(x) represents a 2D fluid velocity, then the attraction and repulsion rates can be written

as

s±(x) = 1
2
div(v(x))± 1

2
s(x). (2.28)

in terms of fluid quantities, where div(v(x)) = ∇ · v(x) = ∂u
∂x

+ ∂v
∂y

is the divergence of the

flow field, sN(x) = ∂u
∂x
− ∂v

∂y
is the normal component of strain, sS(x) = ∂u

∂y
+ ∂v

∂x
is the shear

component of strain, and s(x) =
√
s2
N(x) + s2

S(x) is the total strain. For an incompressible

2D flow, notice s±(x) = ±1
2
s(x) and thus, σtt0(x) = 1

2
s(x) as t − t0 → 0, that is, attracting

and repelling fields have the same structure in the infinitesimal integration time limit.

2.3.2 Approximating FTLE to second-order in integration time

If we consider now the third term, the order T 2 term, of (2.12), then (2.18) becomes

λ+(Ct
t0

(x)) = 1 + 2Tλ+
(
S(x, t0) + 1

2
TB(x, t0)

)
+O(T 3) (2.29)

Note that B(x, t0), like S(x, t0), is symmetric, i.e., B(x, t0)T = B(x, t0). It can be shown via

matrix perturbation techniques (see the appendix) that,

λ+
(
S(x, t0) + 1

2
TB(x, t0)

)
= sn + 1

2
TξTsnBξsn +O(T 2) (2.30)
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Using the Taylor expansion log(1 + ε) = ε − 1
2
ε2 + 1

3
ε3 + O(ε4), by a similar argument as

before, for small T , we have,

log(λ+(Ct
t0

(x))) = log
(

1 + 2T
[
sn + 1

2
TξTsnBξsn +O(T 2)

])
= 2T

[
sn + 1

2
TξTsnBξsn +O(T 2)

]
− 1

2
4T 2s2

n +O(T 3)

= 2T
[
sn + T

(
− s2

n + 1
2
ξTsnBξsn

)
+O(T 2)

] (2.31)

Therefore, for T > 0 with small |T |, we have,

σtt0(x) = sn(x, t0) + T
(
− sn(x, t0)2 + 1

2
ξsn(x, t0)TB(x, t0)ξsn(x, t0)

)
+O(T 2) (2.32)

And similarly, for T < 0 with small |T |, we have,

σtt0(x) = −s1(x, t0)− T
(
− s1(x, t0)2 + 1

2
ξs1(x, t0)TB(x, t0)ξs1(x, t0)

)
+O(T 2) (2.33)

If we include terms through second order in T , we get the following,

σtt0(x) = sn + T
(
− s2

n + 1
2
λ1

)
+ T 2

(
4
3
s3
n − snλ1 + 1

4
λ2

)
+O(T 3) for T > 0

σtt0(x) = −s1 − T
(
− s2

1 + 1
2
λ1

)
− T 2

(
4
3
s3

1 − s1λ1 + 1
4
λ2

)
+O(T 3) for T < 0

(2.34)

where λ1 and λ2 are from (2.93) and (2.102), respectively, in the appendix, and the depen-

dence on x and t0 is understood.
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2.3.3 Equality of the eigenvectors of S and C as integration time

goes to zero

Let C be the n × n right Cauchy-Green strain tensor, S the n × n Eulerian rate-of-strain

tensor, λi an ordered eigenvalue of C, si an ordered eigenvalue of S, and 1 the n×n identity

matrix. Let T > 0 be small enough that the relationships in (2.12) and (2.18) hold and

O(T 2) terms are negligible. Assume that ξi is the eigenvector of S associated with si, then

S ξi = siξi, (2.35)

2TS ξi + ξi = 2Tsiξi + ξi, (2.36)

(2TS + 1) ξi = (2Tsi + 1) ξi, (2.37)

C ξi = λiξi, (2.38)

where the dependence on x and t0 is understood and we used the order-T approximation for

C. Thus, if ξi is an eigenvector of S, then ξi is an eigenvector of C. Now, assuming that ξi

is the eigenvector of C associated with λi, and working through (2.35-2.38) in reverse proves

that if ξi is an eigenvector of C, then ξi is an eigenvector of S in the limit as T goes to 0.

For T < 0 an analogous argument holds using (2.21) in place of (2.18) and with the ordering

of the eigenvalues opposed, i.e. λi ∼ sn−i+1, i ∈ [1, n].

Therefore, in the limit as |T | goes to 0, the eigenvectors of S and C are equal. For small

|T |, we can also use the perturbation expansion of C, to get the estimated eigenvectors of C

from (2.84) in Appendix A.3, which provides the eigenvectors through order T 2 using only

the velocity field v evaluated at x and time t0 as well as appropriate derivatives.
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2.4 Infinitesimal-time LCS

Previous work [1, 2, 3, 4, 5, 6, 7, 10] has demonstrated that LCSs can be identified as Ridges

of the FTLE field. While there are different mathematical definitions for what constitutes a

ridge, a ridge-line can be thought of as the generalization of the concept of a local maxima.

For this manuscript LCSs will be identified as C-ridges of the FTLE field. C-ridges were first

described in [19], they are ridge-lines of the FTLE which are orthogonal to the direction of

maximal stretching. Mathematically, they are defined as,

σ > 0, (2.39)

∇σ · ξλn = 0, (2.40)

(Hσ · ξλn) · ξλn < 0. (2.41)

C-ridges are advantageous over other definitions of ridges for the FTLE field, as they only

rely on invariants of the Cauchy-Green strain tensor. C-ridges of the FTLE field have also

been proven in [19] to be mathematically equivalent to the variational definition hyperbolic

LCSs given in [13].

We propose an instantaneous approximation to the familiar LCS, called infinitesimal-time

LCS (iLCS). Following [19] we seek material lines in the fluid flow which maximize local

stretching and are orthogonal to the direction of maximal stretching. For a fluid flow the

FTLE field provides a measure of stretching over a given time period. As −s1 and sn are the

limits of the backward-time and forward-time FTLE fields as integration time goes to 0, we

seek ridge-lines of these field which are orthogonal to the direction of maximal stretching.

The direction of maximal stretching in a fluid flow over a time period is the given by the

eigenvector of the Cauchy-Green strain tensor associated with the largest eigenvalue. As in

the infinitesimal-time limit, the eigenvectors of the Cauchy-Green and Eulerian tensors are
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equal, we seek ridge-lines of −s1 and s2 which are orthogonal to their associated eigenvec-

tor. Following [19], we call these ridge-lines, S-ridges. S-ridges are the limit of C-ridges as

integration time goes to 0. Because of this, S-ridges are mathematically equivalent to the

variational definition of LCS as the integration time goes to 0.

Because an attracting iLCS is a ridge-line of −s1, it can be defined as a trough-line of s1.

Mathematically, this can be expressed as,

s1 < 0, (2.42)

∇s1 · ξs1 = 0, (2.43)

(Hs1 · ξs1) · ξs1 > 0. (2.44)

Additionally, as a ridge-line of sn, a repelling iLCS can be mathematically expressed as,

sn > 0, (2.45)

∇sn · ξsn = 0, (2.46)

(Hsn · ξsn) · ξsn < 0. (2.47)

It should be noted that iLCSs are not restricted to 2D flows, as other Eulerian diagnostics

have been, but generalize to n dimensional systems. Section 2.5.3 examines iLCSs in a

realistic 2D geophysical flow. Section 2.5.4 applies iLCSs to a time-dependent 3D double

gyre flow. Finally section 2.5.5 explores the use of iLCSs in a full coupled 3D flow.
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2.5 Examples

2.5.1 2D Nonlinear Saddle Flow

Consider the nonlinear saddle flow

ẋ = x

ẏ = −y − y3

(2.48)

These two uncoupled ODEs admit the explicit solutions,

x(t) = x0e
t

y(t) =
y0√

(1 + y2
0)e2t − y2

0

(2.49)

where the initial condition at time t0 = 0 is x0 = (x0, y0). While the y solution goes to

infinity in finite integration time, only times small enough to be below the singular limit are

considered. The Cauchy-Green strain tensor for a small backward integration time T < 0, is

CT
0 (x0) =

e2T 0

0 e4T

((1+y20)e2T−y20)3

 , (2.50)

which yields a backward time FTLE of

σT0 (x0) = − 1

2T
log

(
e4T

((1 + y2
0)e2T − y2

0)3

)
(2.51)
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Writing the log term as follows, using a Taylor series approximations for small |T |,

log(e4T )− log[(1 + y2
0)e2T − y2

0)3]

= 4T − 3 log[(1 + y2
0)(1 + 2T + 1

2!
(2T )2 + 1

3!
(2T )3 +O(T 4))− y2

0]

= 4T − 3 log[1 + (1 + y2
0)2T + (1 + y2

0)2T 2 + (1 + y2
0)4

3
T 3 +O(T 4)]

= 4T − 3[(1 + y2
0)2T + (1 + y2

0)2T 2 − 1
2
(1 + y2

0)24T 2

+ 1
3
(1 + y2

0)3(2T )2 + 4
3
(1 + y2

0)T 3 − 1
2
(1 + y2

0)2(2T )3 +O(T 4)]

= 4T − (1 + y2
0)6T + 6T 2y2

0(1 + y2
0)− 4y2

0(1 + y2
0)(1 + 2y2

0)T 3 +O(T 4)

= −2T [(1 + 3y2
0)− 3y2

0(1 + y2
0)T + 2y2

0(1 + y2
0)(1 + 2y2

0)T 2 +O(T 3)]

(2.52)

So the FTLE is expanded in T as follows, obtained by dividing by −2T ,

σT0 (x0) = (1 + 3y2
0)− 3y2

0(1 + y2
0)T + 2y2

0(1 + y2
0)(1 + 2y2

0)T 2 +O(T 3) (2.53)

We would like to approximate the first, second, and third terms (the zeroth-order, first-order,

and second-order in T , respectively) using the procedure outlined in a previous section. The

gradient of the velocity is

∇v(x0) =

1 0

0 −(1 + 3y2
0)

 , (2.54)

which is also S(x0), since the gradient is diagonal. This has a minimum eigenvalue s1 =

−(1 + 3y2
0), the negative of which matches the first term of (2.53), as prescribed by (2.33).

To calculate the second term of (2.53), the term first-order in T , we need to calculate the

acceleration field and then B(x0). The acceleration field is, following (2.14),

ẍ = d
dt
ẋ = x,

ÿ = d
dt
ẏ = y + 4y3 + 3y5.

(2.55)
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Therefore (2.13) gives,

B(x0) =

1 0

0 (1 + 12y2
0 + 15y4

0)

+

1 0

0 (1 + 6y2
0 + 9y4

0)

 ,
=

2 0

0 (2 + 18y2
0 + 24y4

0)

 .
(2.56)

The normalized eigenvector of S(x0) corresponding to s1 is simply ξ0 = [0, 1]T , which yields,

1
2
λ1 = 1

2
ξT0 B(x0)ξ0 = 1

2

[
0 1

]2 0

0 (2 + 18y2
0 + 24y4

0)


0

1

 ,
= 1

2
(2 + 18y2

0 + 24y4
0),

= 1 + 9y2
0 + 12y4

0

(2.57)

hence,

−s2
1 + 1

2
ξT0 B(x0)ξ0 = −(1 + 6y2

0 + 9y4
0) + 1 + 9y2

0 + 12y4
0,

= 3y2
0 + 3y4

0

= 3y2
0(1 + y2

0),

(2.58)

the negative of which matches the T coefficient of the second term of (2.53), as prescribed

by (2.33).

For the term second-order in T , we note that

Q(x0) =

8
3

0

0 −(8
3

+ 56y2
0 + 192y4

0 + 160y6
0)

 , (2.59)
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and since (2.98) implies that ξ1 is parallel to ξ0, (2.102) yields,

λ2 = ξT0 Q(x0)ξ0 = −(8
3

+ 56y2
0 + 192y4

0 + 160y6
0) (2.60)

According to (2.34), the second-order term is

−T 2[4
3
s3

1 − s1λ1 + 1
4
λ2]

= −T 2[(−4
3

+ 2− 2
3
) + (−12 + 24− 14)y2

0

+ (−36 + 78− 48)y4
0 + (−36 + 72− 40)y6

0]

= −T 2[0− 2y2
0 − 6y2

0 − 4y6
0]

= 2y2
0(1 + y2

0)(1 + 2y2
0)T 2

(2.61)

which matches the T 2 term of the true FTLE field, (2.53).

We have thus verified on this example the formulas of Sections 2.3.1 and 2.3.2 for approxi-

mating the true FTLE, (2.53), of the nonlinear saddle, (2.48), through second-order in the

integration time T .

To illustrate the successive approximations, we show in Fig. 2.1 the root mean-squared

error (RMSE) for the FTLE field as a function of integration time magnitude, |T |, over the

domain U = {(x0, y0) ∈ R2
∣∣ |y0| < 1

2
}. Notice that, as expected, the error grows linear in

|T |, quadratic in |T |, and cubic in |T |, for the zeroth-order, first-order, and second-order

approximations, respectively.

2.5.2 2D Time-Varying Double-Gyre Flow

While the time-varying double-gyre does not admit an explicit solution, as the previous

example does, we can still analytically approximate the FTLE field up to first-order in T
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Figure 2.1: RMSE for successive approximations of the backward-time FTLE field for the
nonlinear saddle (2.48) expanded in T : zeroth-order (blue), first-order (magenta), second-
order (black). Notice that the error grows linear in |T |, quadratic in |T |, and cubic in |T |,
respectively, as shown more clearly in the log-log plot on the right.

using the formulas of Section 2.3.2.

We look at the double-gyre flow as described in [1]. This flow comes from the Hamiltonian

stream function,

ψ(x, y, t) = A sin(πf(x, t)) sin(πy), (2.62)

where

f(x, t) = ε sin(ωt)x2 + (1− 2ε sin(ωt))x. (2.63)
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We can then calculate the velocity field, v = (u, v) as,

ẋ = u(x, y, t) = −∂ψ
∂y

= −Aπ sin(πf(x, t)) cos(πy),

ẏ = v(x, y, t) =
∂ψ

∂x
= Aπ cos(πf(x, t)) sin(πy)

∂f

∂x
(x, t).

(2.64)

Following [1], we use parameters A = 0.1, ω = 0.2π, and ε = 0.25. The gradient tensor is

∇v =

∂u∂x ∂u
∂y

∂v
∂x

∂v
∂y


=

 −π2A cos(πf) cos(πy)∂f
∂x

π2A sin(πf) sin(πy)

−π2A sin(πf) sin(πy)∂f
∂x

+ πA cos(πf) sin(πy)∂
2f
∂x2

π2A cos(πf) cos(πy)∂f
∂x

 .
(2.65)

From this gradient, it can be analytically calculated via (2.27) that the zeroth order approx-

imation to the backward-time FTLE for an initial condition x0 = (x0, y0) at initial time t0

in the infinitesimal integration time limit is,

s1 = −1

2
π2A

[(
sin(πf) sin(πy0)

(
1− ∂f

∂x

)
+ 1

π
cos(πf) sin(πy0)

∂2f

∂x2

)2

+ 4
(

cos(πf) cos(πy0)
∂f

∂x

)2
]1/2

.

(2.66)

where the dependence of s1 and f on (x0, t0) is understood. We can also write this as,

s1 = −π2A

[
ε2 sin2(ωt)

{
sin2(πy0)

(
sin2(πf)(1− x)2 + 1

π
sin(2πf)(1− x)

+ 1
π2 cos2(πf)

)
+ cos2(πy0) cos2(πf)(1− x)2

}

+ cos2(πy0) cos2(πf)
(

1− 4ε sin(ωt)(1− x)
) ]1/2

.

(2.67)
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Note that the s1 field, just like the vector field, is a periodic function of t0 with period 2π/ω.

For t0 = k2π/ω, for k an integer, we have s1(x0, y0, t0) = −π2A| cos(πx0) cos(πy0)|.

The leading order term in the backward integration time T < 0 can also be analytically

determined. See the appendix for details.
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Figure 2.2: Left: RMSE vs. |T | for successive approximations of the backward-time FTLE
field for the double-gyre expanded in T : zeroth-order (blue), first-order (magenta), second-
order (black), showing the error grow linear, quadratic, and cubic in |T |, respectively. Right:
Shows this RMSE vs. |T | in a log-log plot.

Figure 2.2 shows the RMSE between the backward-time FTLE field and the zeroth order

(blue), first order (magenta), and second order (black) approximations. In this figure one

can see that as the integration time, |T |, goes to 0 the approximations converge to the true

FTLE field, as is expected. Figure 2.3 builds on this by showing a comparison of the FTLE

field for a short integration time, T = −0.3 (center), with an approximation to first order in

T (left).
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Figure 2.3: Left: FTLE field for the double-gyre flow for an integration period of T = −0.3.
Right: approximation to the FTLE field to first-order in T . Parameters: A = 0.1, ω = 0.2π,
ε = 0.25, and t0 = 0.

2.5.3 2D Geophysical Flow Example

In this section the methods described above are applied to a realistic geophysical flow exam-

ple, using wind data from a Weather Research and Forecasting (WRF) model simulation over

the southeastern United States [20]. This model was run with a horizontal grid resolution

of 12 km × 12 km and temporal resolution of 1 hr. Due to the scale mismatch between the

horizontal resolution and the vertical resolution, ∼ 0.05 - 1 km, 1 vertical level was chosen to

focus on for the analysis. The level that was chosen was ∼ 100 m above ground level, similar

to what was done in [5, 7]. The simulation was performed for a 24 hr period beginning at

0000 GMT on July 1st 2011.

Using this data set the relationship between the attraction rate, higher order instantaneous

approximations, and the backward-time FTLE field for a 2D geophysical fluid flow can be

numerically verified. This can be seen in figure 2.4, which shows the RMSE of of these

approximations with the FTLE field as we integrate backward in time from 0000 GMT on

July 2nd 2011. The blue line shows the RMSE for the attraction rate, the magenta for the

attraction rate with a first order correction term, and the black for the attraction rate with
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a second order correction. As |T | goes to 0, the RMSE of all 3 approximations also goes to

0. Thus numerically verifying the relationship shown in section 2.3.1 for a 2D geophysical

flow. This figure also shows that for small |T | the second order approximation is the most

accurate, as expected. However, for larger |T | the attraction rate will provide the most

accurate approximation, which is to be expected of a Taylor series.
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Figure 2.4: RMSE for successive approximations of the backward-time FTLE field for an
atmospheric flow expanded in T : zeroth-order (blue), first-order (magenta), and second-order
(black). Time is in seconds.

Figure 2.5 visually explores this connection between the attraction rate and the FTLE field.

In Panel A we show the attraction rate field at 0000 GMT on July 2st 2011. Panels B, C, and

D show the FTLE field after 1, 2, and 4 hours of backward-time integration. In these plots

it can be seen that the important Lagrangian transport structures over the period examined

are already present in the attracting rate field. As the field is integrated backward in time

the transport structures become sharper and grow longer, but do not change significantly.

For this particular flow, as the integration time is increased the transport patterns which

are shown by the attracting rate field become more sharply defined. This relationship can
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be quantified by the Pearson correlation coefficient, which is shown in figure 2.6. This figure

shows that for short integration times, there is a strong correlation, > 0.6, between the

attraction rate and backward-time FTLE field. Then, as the integration time is increased

the correlation between the fields becomes weaker.

Figure 2.5: Comparison of the attraction rate (A), with FTLE fields of integration times
T = (B) −1 hr (C) −2 hr, (D) −4 hr. The spatial correlation between these fields can be
seen in figure 2.6

Furthermore, this data set is able to verify that iLCSs are effective at predicting the La-

grangian behavior of passive tracer particles advected in a 2D geophysical flow. Figure 2.7

shows the evolution of attracting iLCSs (blue), repelling (red) iLCSs, and passive tracers
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Figure 2.6: Pearson correlation coefficient between the attraction rate and the backward-time
FTLE for different integration times, |T |.

(cyan). These structures were initialized at 0000 GMT on July 1st 2011 and advected for-

ward in time. In panel A we show the iLCSs and tracers at the initial time. Panels B,

C, and D show the iLCSs and tracers after 2, 4, and 8 hours, respectively. An anima-

tion of the evolution of the iLCSs and tracers over the entire 24 hr period can be found

at https://www.youtube.com/watch?v=h4UhJT8vsiU. In these panels we can see that as

time moves forward passive tracers are repelled away from the repelling iLCSs and attracted

towards the attracting iLCSs, as we would expect. Interestingly, we can also see that some

of the repelling iLCSs are attracted onto and effectively consumed by the attracting iLCSs.

The explanation for this can be found in figure 2.8, where we show a comparison between the

attracting rate and the repelling rate fields. In this figure we can see that the attracting rate

field is stronger than the repelling rate field is, the most attractive points of the attracting

rate field are more than twice as strong as the most repelling points in the repelling rate

field. Thus it can be concluded that while the repelling iLCSs are repulsive, the attracting

iLCSs are more attractive and thus overpower the repelling iLCSs after a sufficient period
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of time.
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Figure 2.7: iLCSs and passive tracers at different integration times, T . A) T = 0 hr, B)
T = 2 hr, C) T = 4 hr, D) T = 8 hr. Repelling iLCSs are shown in red, attraction iLCSs in
blue, and passive tracers in cyan.

2.5.4 3D Time-varying Double Gyre Flow

In this section iLCSs are applied to a time-dependent three dimensional flow and the con-

vergence of the attraction rate and higher order approximation to the backward-time FTLE

field is further demonstrated. For this section the time-dependent double-gyre from section
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Figure 2.8: Comparison of the attraction rate field, s1, left, and the repulsion rate field,
s2, right, at T = 0. Structures in the attraction rate field are noticeably stronger than
in the repulsion rate field. The attraction rate field has been multiplied by −1 to aid in
visualization. Colorbar has units of hr−1.

2.5.2 was extended to 3D. The new 3D equations are,

ẋ = −Aπ sin(πf(x, t)) cos(πy), (2.68)

ẏ = Aπ cos(πf(x, t)) sin(πy)
∂f

∂x
(x, t), (2.69)

ż = 0. (2.70)

While this flow is still largely 2-dimensional (i.e. there is no motion in the vertical direction),

it does serve as a proof of concept that iLCSs work for 3-dimensional systems.

Figure 2.12 shows the RMSE of Eulerian approximations with the FTLE field as the flow

is integrated backward in time from t0. For the sake of simplicity t0 = 0 was chosen. The

RMSE for the attraction rate is shown in blue and the attraction rate with a first order

correction in magenta. It can be seen that as the integration time goes to 0, the RMSE goes

to 0 as well, as expected.

iLCSs for the 3D double gyre flow are shown in figures 2.10 and 2.11. Figure 2.10 shows an

attracting iLCS (blue), along with a blob of passive tracers (green). Meanwhile, figure 2.11



52
Chapter 2. Finite-time Lyapunov exponent field in the infinitesimal time

limit

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

|T |

0.00

0.05

0.10

0.15

0.20
F
T
L
E

fi
el
d
ro
o
t
m
ea
n
-s
q
u
a
re
d
er
ro
r

Figure 2.9: RMSE for successive approximations of the backward-time FTLE field for the
3D double-gyre flow (2.70) expanded in T : zeroth-order (blue), first-order (magenta). Time
is in non-dimensional units.

show a repelling iLCS (red), along with blob of tracers (green). In both figures, the first

row shows the the initial configuration from 2 different angles, while the second row shows

the configuration after being advected by the flow for a time of 1.25, non-dimensional time.

In figure 2.10, one can see that the green blob, starting out as a sphere around a portion of

the iLCS, becomes squeezed towards and spread along the iLCS as the two are advected by

the flow. In figure 2.11, the green blob, starting as a sphere, spreads out and away from the

repelling iLCS as they are advected by the flow. These behaviors demonstrate that iLCSs

are indeed the instantaneous approximation of traditional LCSs in 3D. Animations of these

figures can be found online. The animation for the attracting iLCS can be found at https:

//youtu.be/NWxdG7BY0_o, and the repelling iLCS at https://youtu.be/ZkD3qBnrHL0.

https://youtu.be/NWxdG7BY0_o
https://youtu.be/NWxdG7BY0_o
https://youtu.be/ZkD3qBnrHL0
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Figure 2.10: An attracting 3D iLCS, blue, with a blob a passive tracers, green, shown at
different angles. Top row shows the iLCS and tracers at the initial time, t=0. Bottom row
shows the iLCS and tracers after being advected forward in time 1.25.

2.5.5 3D ABC Flow

In this section iLCSs are applied to a fully coupled 3-dimensional flow, additionally the

convergence of the attraction rate and higher order approximation to the backward-time

FTLE field is further demonstrated. For this section the ArnoldBeltramiChildress (ABC)
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Figure 2.11: A repelling 3D iLCS, red, with a blob a passive tracers, green, shown at different
angles. Top row shows the iLCS and tracers at the initial time, t=0. Bottom row shows the
iLCS and tracers after being advected forward in time 1.25.

flow [21, 22] was chosen. The equations of the ABC flow are,

u = A sin(z) + C cos(y),

v = B sin(x) + A cos(z),

w = C sin(y) +B cos(x).

(2.71)
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The ABC flow is an exact solution to Euler’s fluid equations and has been shown to have

chaotic trajectories [22]. The domain for (x, y, z) is the periodic cube U = [0, 2π]3. For

coefficients we choose A =
√

3, B =
√

2, C = 1, as was done in [23].

As the ABC flow is an analytical flow, we can also analytically express the repulsion and

attraction rate fields, respectively, as,

s3 = 2ρ1/3 cos
(
θ
3

)
> 0,

s1 = −1
2
s3 −

√
3ρ1/3 sin

(
θ
3

)
< 0,

(2.72)

where the dependence on position x = (x, y, z) is understood and ρ and θ are given by,

ρ =
√
q2 + |p|,

θ = tan−1
(

Im(
√
p)

q

)
,

(2.73)

where

q = −1
2
a0,

p =
1

27
a3

1 +
1

4
a2

0,

a0 = −1
4
(B cos(x)− C sin(y))(C cos(y)− A sin(z))(−B sin(x) + A cos(z)),

a1 = −1
4

[
(B cos(x)− C sin(y))2 + (C cos(y)− A sin(z))2 + (−B sin(x) + A cos(z))2

]
(2.74)

where the coefficients a1 and a0 come from the characteristic polynomial for S for this system,

s3 + a1s+ a0 = 0. (2.75)

Figure 2.12 shows the RMSE of Eulerian approximations with the FTLE field as the flow
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is integrated backward in time from t0. Since this flow is autonomous, t0 is arbitrary. The

RMSE for the attraction rate is shown in blue and the attraction rate with a first order

correction in magenta. As in the previous sections, this figure shows that as the integration

time goes to 0, the RMSE goes to 0 as well.
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Figure 2.12: RMSE for successive approximations of the backward-time FTLE field for the
ABC flow (2.71) expanded in T : zeroth-order (blue), first-order (magenta). Time is in
non-dimensional units.

Figures 2.13 and 2.14 examine the efficacy of iLCSs for the ABC flow. As in the previous

section, figure 2.13 shows an attracting iLCS (blue), along with a blob of passive tracers

(green); while, figure 2.14 show a repelling iLCS (red), along with 2 blobs of passive tracers

(green). In both figures, the first row shows the the initial configuration from 2 different

angles, while the second row shows the configuration after being advected by the flow for a

time of 1.309, non-dimensional time. In figure 2.13, one can see that the green blob, starting

out as a sphere around a portion of the iLCS, becomes squeezed towards and spread along

the iLCS as the two are advected by the flow. Due to the the large amounts of twisting and

shear in the ABC flow, the repelling effects of iLCS are more difficult to visualize in this flow

than in sections 2.5.3 and 2.5.4. To compensate for this, 2 blobs were used in figure 2.14.
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The green blobs are initialized above and below a repelling iLCS. In this figure one can see

that as the iLCS and tracers are advected by the flow, the tracer blobs are transported away

from each other. This also demonstrates the effectiveness of iLCSs as an indicator of flow

separatrices, as tracers on opposite sides of the iLCS do not interact with one another. An

animation of the the attracting iLCS and tracer blob in figure 2.13 can be found online at

https://youtu.be/fmXFcpUEfaI.

2.6 Conclusion

This manuscript has formulated a rigorous mathematical connection between the attraction

rate and the backward-time FTLE, as well as the repulsion rate and the forward-time FTLE.

These mathematical connections prove that the attraction and repulsion rates are the limits

of the FTLE as integration time goes to 0. Additionally this manuscript has show that for

small integration times |T | << 1 the eigenvectors of the right Cauchy-Green strain tensor

are equal to those of the Eulerian rate-of-strain tensor. These proofs laid the groundwork

for a new Eulerian diagnostic, which was herein formulated, iLCS, the infinitesimal-time

limit of Lagrangian coherent structures. In addition to this, higher order approximations

of the FTLE field using Rivlin-Ericksen tensors were derived and explored. These resulted

in findings that higher order FTLE approximations are more accurate for short integration

periods, consistent with what would be expected from a Taylor series expansion.

This work provides a significant contribution to the field of dynamical systems analysis and

has important applications for the study unsteady fluid flows. For example, iLCSs can be

used to in the place of LCSs when studying geophysical flows. This manuscript showed

that iLCSs are valid predictors of atmospheric transport for up to several hours; they would

likely be valid even longer in oceanic flows. The use of iLCSs could thus provide an accurate
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Figure 2.13: An attracting 3D iLCS, blue, with a blob a passive tracers, green, shown at
different angles. Top row shows the iLCS and tracers at the initial time, t0 = 0. Bottom
row shows the iLCS and tracers after being advected forward in time to T = t− t0 = 1.309.

analysis of these flows more quickly than traditional LCS analysis. This faster analysis

would in turn be useful for time sensitive applications, such as search and rescue operations

and hazardous release scenarios. Additionally, Lagrangian diagnostics, such as the FTLE,

have recently been used to improve the calculation of reduced order models (ROMs) [24].

In place of these Lagrangian diagnostics, the higher order Eulerian diagnostics derived in
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Figure 2.14: A repelling 3D iLCS, red, with a blob a passive tracers, green, shown at different
angles. Top row shows the iLCS and tracers at the initial time, t0 = 0. Bottom row shows
the iLCS and tracers after being advected forward in time to T = t− t0 = 1.309.

this manuscript could be used to improve ROMs. This would reduce both the time and the

computational power needed generate these ROMs.

Future work on this topic will explore: the existence of iLCSs embedding within higher-

dimensional iLCSs, the application of iLCSs and higher order FTLE approximations to

experimental data, the application of higher order FTLE approximation to ROMs, and
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finding a way to determine the interval over which Eulerian diagnostics are most effective.

Appendix A

A.1 Expansion of the right Cauchy-Green tensor C

Evaluation of the flow map and therefore the right Cauchy-Green tensor Ct
t0

, from (2.5), can

be computationally expensive. Therefore, this section seeks an instantaneous approximation

that gives the leading order behavior of this tensor field, expanded in terms of the integration

time T = t− t0.

For tensor fields in what follows, the dependence on x0 and t0 will be notationally dropped

for clarity, as it will be understood. For small time T , the right Cauchy-Green tensor, C,

may be expanded, as in [17], in terms of the integration time T ,

C = C|T=0 +
dC

dT

∣∣∣∣
T=0

T +
1

2!

d2C

dT 2

∣∣∣∣
T=0

T 2 +
1

3!

d3C

dT 3

∣∣∣∣
T=0

T 3 +O(T 4). (2.76)

where the dependence on the initial position and time is understood. Because all derivatives

are evaluated at T = 0, d
dt

∣∣
t=t0

= d
dT

∣∣
T=0

. The first term on the right denotes the situation

of no deformation, therefore, C|T=0 = 1. The derivatives of the right Cauchy-Green tensor

are given by the Rivlin-Ericksen tensors [17, 25],

dkC

dtk
= ∇dx

dt
+

(
∇dx
dt

)T
, k = 1,

dkC

dtk
= ∇d

kx

dtk
+

(
∇d

kx

dtk

)T
+

k−1∑
i=1

 k

i

(∇dix
dti

)T
∇d

k−ix

dtk−i
, k ≥ 2.

(2.77)

For small |T | � 1, the leading order behavior is given by the first Rivlin-Ericksen tensor
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(∇v + (∇v)T ), which is twice S. The second-order term is,

d2C

dt2
= ∇d

2x

dt2
+

(
∇d

2x

dt2

)T
+ 2

(
∇dx
dt

)T
∇dx
dt
,

= ∇dv
dt

+

(
∇dv
dt

)T
+ 2 (∇v)T ∇v,

= 2B

(2.78)

where B is the same as given in (2.13).

The third-order term is

d3C

dt3
= ∇d

3x

dt3
+

(
∇d

3x

dt3

)T
+ 3

[(
∇dx
dt

)T
∇d

2x

dt2
+

(
∇d

2x

dt2

)T
∇dx
dt

]
,

= ∇da
dt

+

(
∇da
dt

)T
+ 3

[
(∇v)T ∇a + (∇a)T ∇v

]
= 3Q

(2.79)

where

Q ≡ 1

3

[
∇da
dt

+

(
∇da
dt

)T]
+
[
(∇v)T ∇a + (∇a)T ∇v

]
(2.80)

The expansion of the right Cauchy-Green tensor (2.76) can be written as,

C = 1+ 2TS + T 2B + 1
2
T 3Q +O(T 4),

= 1+ 2T
(
S + 1

2
TB + (1

2
T )2Q +O(T 3)

)
.

(2.81)

A.2 Proof of Eq. (2.16)

Let A be an n × n matrix, λ an eigenvalue of A, ξ an eigenvector of A, 1 be the n × n

identity matrix and c ∈ R.

By the definition of an eigenvalue we have Aξ = λξ thus,
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(A + c1) ξ = Aξ + c ξ = λξ + c ξ = (λ+ c) ξ. (2.82)

Therefore, if λ is an eigenvalue of A, then (λ+ c) is an eigenvalue for A + c1.

A.3 Eigenvalues of the Taylor expanded Cauchy-Green tensor

Let S be a real, symmetric n× n matrix with n distinct eigenvalues, and let B and Q also

be real, symmetric n× n matrices. We seek the eigenvalues of

Sε = S + εB + ε2Q, (2.83)

a perturbation of S, where ε is a small scalar. In our case, from (2.81), our small parameter

is ε = 1
2
T .

Consider the eigenvalue λ0 of S with corresponding normalized eigenvector ξ0. Let’s refer to

the perturbed eigenvalue and corresponding perturbed eigenvector of Sε as λε and ξε. We

can expand ξε and λε in powers of ε as

ξε = ξ0 + εξ1 + ε2ξ2 +O(ε3), (2.84)

λε = λ0 + ελ1 + ε2λ2 +O(ε3). (2.85)

The eigenvector equation Sεξε = λεξε can be approximated as

(S + εB + ε2Q)(ξ0 + εξ1 + ε2ξ2) = (λ0 + ελ1 + ε2λ2)(ξ0 + εξ1 + ε2ξ2) (2.86)

which leads to the following three expressions, corresponding to the order one terms, order
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ε, and order ε2 terms, respectively,

Sξ0 = λ0ξ0, (2.87)

Sξ1 + Bξ0 = λ0ξ1 + λ1ξ0, (2.88)

Sξ2 + Bξ1 + Qξ0 = λ0ξ2 + λ1ξ1 + λ2ξ0. (2.89)

Multiply (2.88) by ξT0 to get

ξT0 Sξ1 + ξT0 Bξ0 = λ0ξ
T
0 ξ1 + λ1ξ

T
0 ξ0 (2.90)

Since ξ0 is normalized, ξT0 ξ0 = 1. Also, since S is symmetric, we have

ξT0 Sξ1 = (ξT1 Sξ0)T

= (ξT1 λ0ξ0)T

= λ0ξ
T
0 ξ1

(2.91)

where we used (2.87). Now (2.90) is

λ0ξ
T
0 ξ1 + ξT0 Bξ0 = λ0ξ

T
0 ξ1 + λ1 (2.92)

Thus,

λ1 = ξT0 Bξ0, (2.93)

which, since B is symmetric, represents a quadratic form.

We can put bounds on the term ξT0 Bξ0, noting that ξ0 is a unit vector. If bn is the maximum

eigenvalue of B, then

max
ξ0
ξT0 Bξ0 = bn (2.94)
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Similarly, if b1 is the minimum eigenvalue of B, then

min
ξ0
ξT0 Bξ0 = b1 (2.95)

So

λ1 = ξT0 Bξ0 ∈ [b1, bn] (2.96)

So (2.85) becomes

λε = λ0 + ελ1 +O(ε2) (2.97)

where λ1 is from (2.93).

With λ1 in hand, we can also determine ξ1, which solves the following re-arranged version

of (2.88),

(S− λ01)ξ1 = −(B− λ11)ξ0 (2.98)

Note that (S− λ01) is not invertible as it has zero determinant, since λ0 is an eigenvalue of

S. The null space of (S− λ01) is span{ξ0}. Note that (2.98) is of the form Ax = b with a

square matrix A of nullity 1 and a vector b which is in the image of A, as shown below.

Note that the vector Bξ0 can be written as,

Bξ0 = λ1ξ0 + dξ′⊥0 , (2.99)

where d ∈ R and ξ′⊥0 is, in general, a vector in im(S− λ01). We know that the coefficient of

ξ0 in (2.99) is λ1 from (2.93).

The right-hand side of (2.98) can be written as,

−Bξ0 + λ1ξ0 = −dξ′⊥0 (2.100)
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since the λ1ξ0 terms cancel. This means the right-hand side of (2.98) is a vector b which is

in im(S− λ01), the image of the operator on the left-hand side of (2.98).

We can further determine λ2 by multiplying (2.89) by ξT0 to get, by a similar procedure as

before,

λ0ξ
T
0 ξ2 + ξT0 Bξ1 + ξT0 Qξ0 = λ0ξ

T
0 ξ2 + λ1ξ

T
0 ξ1 + λ2. (2.101)

Thus,

λ2 = ξT0 Qξ0 + ξT0 Bξ1 − λ1ξ
T
0 ξ1. (2.102)

But take the transpose and we see,

λ2 = ξT0 Qξ0 + ξT1 (B− λ11)ξ0, (2.103)

= ξT0 Qξ0 − ξT1 (S− λ01)ξ1, (2.104)

where we used (2.98). We can write ξ1 as

ξ1 = aξ0 + bξ⊥0 , (2.105)

where a, b ∈ R and ξ⊥0 ∈ im(S− λ01), which is, in general, not equal to ξ′⊥0 . Hence,

λ2 = ξT0 Qξ0 − b2ξ⊥T0 (S− λ01)ξ⊥0 , (2.106)

therefore the only part of ξ1 which contributes to λ2 is the part which is in the image of

(S− λ01).

When dealing with a 2-dimensional flow field, im(S− λ01) is just a 1-dimensional subspace

of R2, and thus ξ′⊥0 in (2.100) is parallel to ξ⊥0 in (2.105). Without loss of generality, we can
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take them to be equal unit vectors, ξ⊥0 = ξ′⊥0 . Thus, (2.98) becomes

b(S− λ01)ξ⊥0 = −dξ⊥0 , (2.107)

or,

(S− λ01)ξ⊥0 = −d
b
ξ⊥0 , (2.108)

which is an eigenvector equation for the matrix (S − λ01) with the eigenvector ξ⊥0 and

corresponding eigenvalue µ = −d
b
, assuming b 6= 0. Note that if b = 0, then we also have

d = 0, from (2.107).

For 2-dimensional flows, from ξ0, we can obtain ξ⊥0 from a 90◦ counterclockwise rotation,

ξ⊥0 = Rξ0, (2.109)

where

R =

0 −1

1 0

 . (2.110)

We use ξ⊥0 so obtained to calculate µ from (2.108) for the case d 6= 0, which becomes the

following eigenvector equation for RT (S− λ01)R with eigenvector ξ0,

RT (S− λ01)Rξ0 = µξ0, (2.111)

Therefore we obtain µ by taking the dot product with ξ0,

µ = ξT0 RT (S− λ01)Rξ0, (2.112)
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and we obtain d from (2.100), noting that ξ⊥T0 ξ0 = 0,

d = ξ⊥T0 Bξ0,

= ξT0 RTBξ0.

(2.113)

Thus, (2.106), for 2-dimensional systems, simplifies to,

λ2 =

ξ
T
0 Qξ0, if d = 0

ξT0 Qξ0 − d2

µ
, if d 6= 0

(2.114)

where d and µ are from (2.113) and (2.112), respectively.

A.4 Details for Time-Varying Double-Gyre Example

The acceleration field, a = d
dt

v = (ax, ay), for the double-gyre, (2.64), is given by

ax =− π2A cos(πf) cos(πy)∂f
∂t

+ 1
2
π3A2 sin(2πf)∂f

∂x
,

ay = π2A
[
− sin(πf) sin(πy)∂f

∂x
∂f
∂t

+ 1
π

cos(πf) sin(πy) ∂
2f

∂x∂t

]
+1

2
π3A2 sin(2πy)

[
sin2(πf)∂f

∂x
+ cos2(πf)(∂f

∂x
)2 − 1

2π
sin(2πf)∂

2f
∂x2

]
,

(2.115)

where the dependence of the term f is understood.

The components of the symmetric B matrix are,

Bxx = −Aπ2 cos(πf) cos(πy) ∂
2f

∂x∂t
+ 1

2
Aπ3 sin(2πf)∂f

∂x
∂f
∂t

+ A2π3 sin(2πf)∂
2f
∂x2

(
1
2
− sin2(πy)(∂f

∂x
)2
)

+ A2π4 cos(2πf)(∂f
∂x

)2

+ A2π4 sin2(πf) sin2(πy)(∂f
∂x

)4 + A2π2 cos2(πf) sin2(πy)∂
2f
∂x2

+ A2π4 cos2(πf) cos2(πy)(∂f
∂x

)2,

(2.116)
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Bxy = 1
2
Aπ cos(πf) sin(πy)

[
∂3f
∂x2∂t

+ π2
(

1− (∂f
∂x

)2
)]

− Aπ2 sin(πf) sin(πy)
(
∂f
∂x

∂2f
∂x∂t
− 1

2
∂2f
∂x2

∂f
∂t

)
− 1

4
A2π4 sin(2πf) sin(2πy)

[
∂f
∂x

(
1 + (∂f

∂x
)2
)

+ 1
2
∂3f
∂x3

]
,

(2.117)

Byy = Aπ2 cos(πf) cos(πy) ∂
2f

∂x∂t
− Aπ3 sin(πf) cos(πy)∂f

∂x
∂f
∂t

− 1
2
A2π3 sin(2πf) sin(2πy)∂

2f
∂x2

+ A2π4 cos2(πf) cos2(πy)(∂f
∂x

)2 + A2π4 sin2(πf) sin2(πy)

+ A2π4(∂f
∂x

)2
(

cos2(πf)− sin2(πy)
)
.

(2.118)

The normalized eigenvector of S(x0, t0) corresponding to the eigenvalue s1(x0, t0) given in

(2.66) is,

ξs1 =

ξx
ξy

 =
1

N

 1
2
α

s̄1 + β

 (2.119)

where

s̄1 =
s1

π2A
= −1

2

√
α2 + 4β2,

N =
√

1
4
α2 + (s̄1 + β)2,

α = sin(πf) sin(πy)
(

1− ∂f
∂x

)
+ 1

π
cos(πf) sin(πy)∂

2f
∂x2
,

β = cos(πf) cos(πy)∂f
∂x

(2.120)

The coefficient of T in the approximation of the backward FTLE for the double gyre is thus

given by s2
1 − 1

2
ξTs1Bξs1 which can be expressed as,

a(x0, t0) = s2
1 − 1

2
(Bxxξ

2
x + 2Bxyξxξy +Byyξ

2
y), (2.121)

using the above formulas. This yields a backward time FTLE approximation for small
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backward times T < 0 of,

σt0+T
t0 (x0) = s1(x0, t0) + a(x0, t0)T +O(T 2). (2.122)

We note that the first and second terms have explicit dependence on both initial position

and initial time.
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FTLE Finite-time Lyapunov exponent

LCS Lagrangian coherent structure

iLCS Infinitesimal-time LCS

OECS Objective Eulerian coherent structure

WRF Weather research and forecasting

NAM North American Mesoscale model

RMSE Root-mean-square error
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abstract

The transport of material through the atmosphere is an issue with wide ranging implications

for fields as diverse as agriculture, aviation, and human health. Due to the unsteady nature

of the atmosphere, predicting how material will be transported via Earth’s wind field is

challenging. Lagrangian diagnostics, such as Lagrangian coherent structures (LCSs), have

been used to discover the most significant regions of material collection or dispersion. How-

ever, Lagrangian diagnostics can be time consuming to calculate and often rely on weather

forecasts that may not be completely accurate. Recently, Eulerian diagnostics have been

developed which can provide indications of LCS and have computational advantages over

their Lagrangian counterparts. In this manuscript, a methodology is developed for estimat-

ing local Eulerian diagnostics from wind velocity data measured by a fixed-wing unmanned

aircraft system (UAS) flying in circular arcs. Using a simulation environment, driven by

realistic atmospheric velocity data from the North American Mesoscale (NAM) model, it is

shown that the Eulerian diagnostic estimates from UAS measurements approximate the true

local Eulerian diagnostics, therefore also predicting the passage of LCSs. This methodology

requires only a single flying UAS, making it easier and more affordable to implement in the

field than existing alternatives, such as multiple UASs and Dopler LiDAR measurements.

1 Introduction

The transport of material in the atmosphere is a problem with important implications for

agriculture [1, 2, 3, 4], aviation [5, 6], and human health [7, 8]. Given the unsteady nature of

atmospheric flows it can be difficult to predict where a fluid parcel, such as one containing

an airborne pathogen, will be transported. Tools from dynamical systems theory, such as
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Lagrangian coherent structures (LCSs), can help us to understand how fluid parcels in a

flow will evolve. The study of atmospheric transport from a dynamical systems perspective

has long focused on the study of large scale phenomena [1, 2, 3, 4, 5, 9, 10, 11, 12]. This

has been largely due to the larger scale grid spacing of readily available atmospheric model

data and the lack of high resolution atmospheric measurements on a scale large enough

to calculate Lagrangian data. Furthermore, this field of study has been largely relegated

to numerical simulations. Few works have attempted to find ways to directly detect LCSs

from experimental measurements in the field. In [6, 13] the authors used wind velocity

measurements from a Doppler light detection and ranging (LiDAR) to detect LCS which had

passed near Hong Kong International Airport. Rather than measure the wind velocity to

try and detect LCSs, the authors of [1] looked at sudden changes in pathogen concentrations

in the atmosphere. They were then able to link those changes to the passage of LCSs using

atmospheric velocity data from the North American Mesoscale (NAM) Weather Research

and Forecasting (WRF) model. Recent advances in dynamical systems theory, such as new

Eulerian diagnostics, as well as new atmospheric sensing technology, such as unmanned

aircraft systems (UAS) [14], have brought the local detection of LCSs within the reach of

operators in the field at any location, without the need for expensive infrastructure. One

recent paper took advantage of these new advances to attempt to predict the passage of

LCSs based on experimental data. The authors of [15] used multiple sonic anemometers

attached to two stationary quadcopter UASs and one tower to measure the wind velocity

around the San Luis Valley in Colorado. From these wind measurements the authors were

able to calculate the local attraction rate, which was then compared to the attraction rate

from a WRF simulation. From these comparisons, the authors found likely indicators of

LCSs associated with convective cells and a front which passed through the region. In this

manuscript, we build upon these recent developments to establish a method to detect LCSs

which can be readily implemented by operators in the field at any location, using only a
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single fixed-wing UAS.

The first of these developments are new Eulerian techniques for measuring the attraction

and repulsion of regions in a fluid flow [16, 17]. In traditional Lagrangian analyses, a velocity

field is needed which is defined over a large enough spatiotemporal scale to allow the accurate

simulation of fluid parcel trajectories. How the parcels are transported by the flow is then

used to determine which parts of the flow are more attractive or repulsive. These new

Eulerian methods do not rely on the simulation of fluid parcel trajectories; instead they are

based on the instantaneous gradients of the velocity field. Since they rely on gradients, these

techniques only require enough velocity data points to enact a finite-differencing scheme.

Furthermore, these methods are Eulerian and thus can be applied to data sets which are

temporally coarse.

The second of these developments is the use of inexpensive UASs to sample the atmospheric

velocity instead of piloted aircraft or other traditional assets. Ground-based wind sensors

such as LiDAR, sonic detection and ranging (SoDAR), or tower-mounted anemometers can

be prohibitively expensive and difficult to relocate in real-time to regions of interest, such as

a chemical spill, wild fire, or radioactive release. Airborne wind measurement from aircraft

has a long history [18, 19] and well-developed existing programs, such as the NASA Airborne

Science Program [20]. The advancement of UASs has enabled wind measurement missions

which may be lower cost, longer duration, and can be implemented in more dangerous en-

vironments. Elston et. al. [21] provide a review of many UAS atmospheric measurement

efforts, and recent works continue to advance both theoretical and practical UAS capabili-

ties [22, 23, 24, 25, 26, 27].

This manuscript develops a methodology which will enable researchers in the field to utilize

local wind measurements to detect LCSs using only a single fixed-wing UAS. This method-

ology will be less complex, less expensive, and less time consuming to implement than those
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utilized in previous studies [1, 6, 13, 15]. Furthermore, by requiring only a single UAS, the

need for expensive infrastructure and multiple pilot/spotter teams is eliminated. Addition-

ally, since this methodology takes advantage of Eulerian diagnostics, there is no need for

expensive computer clusters or time consuming trajectory integration as with Lagrangian

diagnostics. This methodology is developed and tested using an observing system simula-

tion experiment (OSSE). A Historical wind velocity forecast from the NAM model is taken

and passed to a UAS flight simulator, which is assumed to have a perfect anemometer, but

still includes the effects of the wind field on the aircraft’s flight trajectory. The simulated

UAS attempts to fly in a circular orbit about a portion of the NAM model centered on

the coordinates of the Virginia Tech experimental site, Kentland Farm, figure 3.1. From

wind measurements along these circular orbits, we are able to calculate the local trajectory

divergence rate and attraction rate, described in section 2.1. Using these calculations it is

then possible to look for signals of LCSs passing through the area.

This manuscript is organized as follows. Section 3.2.1, describes the Eulerian and Lagrangian

diagnostics which are used to analyze the atmospheric velocity data. Section 3.2.2 describes

the algorithm we developed to calculate the gradient of a scalar field from measurements

along a circular arc, this gradient is necessary for the computation of the Eulerian diagnos-

tics. Section 3.2.3 briefly describes the NAM model which was used, how the model data

were prepared for analysis, and the flight simulator which was used. In section 3.3.1 the

results of a parametric study which analyzes the ability of a UAS flying in a circular arc

to approximate Eulerian diagnostics over various radii are presented. Section 3.3.2 presents

results concerning the ability of Eulerian diagnostics to approximate Lagrangian diagnos-

tics and detect LCSs passing through an area using receiver operating characteristic (ROC)

curves. Due to the discrete nature of numerical computations, a parametric study to in-

vestigate various area thresholds for the detection of LCSs was performed. Section 3.3.3
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presents results concerning the ability of Eulerian diagnostics, as approximated from a UAS

flight, to detect LCSs passing through an area. Once again a parametric study to investigate

various area thresholds for the detection of LCSs using ROC curves is performed. Section

3.4 discusses the results presented in section 3.3. Finally section 3.5 presents the conclusion

of the manuscript.

Kentland Farm

Figure 3.1: Map of the Mid-Atlantic United States, Kentland Farm in Virginia is shown in
red.
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2 Methods

2.1 Lagrangian-Eulerian Analysis

Consider the dynamical system

d

dt
x(t) = v(x(t), t), (3.1)

x0 = x(t0), (3.2)

x ∈R2, t ∈ R, (3.3)

where x(t) is the position vector of a fluid parcel at time t and v(x, t) is the time varying

horizontal wind velocity vector at position x(t), time t. The components of the horizontal

position vector are x = (x, y), where x is the eastward position and y is the northward

position, and the horizontal velocity vector, v = (u, v), where u is the eastward velocity

and v is the northward velocity. This system can be analyzed using both Langrangian and

Eulerian tools. For the Lagrangian analysis, the finite-time Lyapunov exponent (FTLE), σ,

and LCSs are used. For this study, LCSs are defined as C-ridges of the FTLE field following

[28]. The FTLE field is a measure of the stretching of fluid parcels within a flow, the forward-

time FTLE measures repulsion and the backward-time FTLE measures attraction. LCSs are

the most attracting and repelling material surfaces within a fluid flow; as such, they provide

a means of visualizing how particles within the flow will evolve. For the Eulerian analyses

the attraction rate, s1, and the trajectory divergence rate, ρ̇, are used. Both of these rates

are derived from the Eulerian rate-of-strain tensor, S, described below. The attraction rate

is the minimum eigenvalue of S and was shown in [16] to provide a measure of instantaneous

hyperbolic attraction, with isolated minima of s1 providing the cores of attracting objective

Eulerian coherent structures (OECS). Recent work has shown that in 2D, s1 is the limit of the
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backward-time FTLE as the integration time goes to 0 and that troughs of s1 are attracting

infinitesimal-time LCS (iLCS) [29]. A schematic of which can be seen in figure 3.2. The

trajectory divergence rate is a measure of how much repulsion/attraction is changing along

streamlines of the velocity field, as depicted in figure 3.3 [17].

To calculate the Lagrangian metrics, first calculate the flow map for the time period of

interest,

Ft
t0

(x0) = x0 +

∫ t

t0

v(x(t), t) dt. (3.4)

Taking the gradient of the flow map, the right Cauchy-Green strain tensor is then calculated,

Ct
t0

(x0) = ∇Ft
t0

(x0)T · ∇Ft
t0

(x0), (3.5)

with ordered eigenvalues, λ1 ≤ λ2. From the largest eigenvalue of the right Cauchy-Green

strain tensor, λ2, the FTLE field is derived,

σtt0(x0) =
1

2|t− t0|
log (λ2(x0)) . (3.6)

Ridges of this field can then be identified as LCSs.

For the Eulerian metrics, the Eulerian rate-of-strain tensor is defined as

S(x0, t0) =
1

2

(
∇v(x0, t0) +∇v(x0, t0)T

)
, (3.7)

with ordered eigenvalues s1 ≤ s2. The attraction rate is defined as the minimum eigenvalue

of S, s1. The attraction rate can be directly calculated from the velocity gradient using the

formula,

s1 = 1
2

(
∂u
∂x

+ ∂v
∂y

)
− 1

2

√(
∂u
∂x
− ∂v

∂y

)2

+
(
∂u
∂y

+ ∂v
∂x

)2

. (3.8)
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The trajectory divergence rate is defined as

ρ̇(x0, t0) = n̂(x0, t0)T · S(x0, t0) · n̂(x0, t0) =

(
v(x0, t0)T · JT · S(x0, t0) · J · v(x0, t0)

)
||v(x0, t0)||2 , (3.9)

where n̂(x0, t0) is the unit vector normal to the trajectory and J is the symplectic matrix,

J = [ 0 1
−1 0 ] [17].

Fluid parcel

Trough of

s
1

Figure 3.2: Schematic of the effect of a trough of the attraction rate, s1, field on a fluid
parcel.

Figure 3.3: Schematic of the trajectory divergence rate. Where ρ̇ < 0, trajectories are
converging; where ρ̇ > 0 trajectories are diverging.

2.2 Gradient Approximation from UAS Flight

In order to calculate the Eulerian rate-of-strain tensor from wind measurements along a

simulated UAS flight path, we have developed an algorithm to approximate the gradient of

a scalar field based on measurements along a circular arc, figure 3.4. The algorithm is based

on the assumption that the scalar field is not significantly changing in time during the period
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of one full orbit, but is changing in space. We believe this assumption is appropriate to apply

to atmospheric velocity fields, as mid to larger scale atmospheric flows tend to change on the

order of hours, while UAS orbits on the spatial scale of interest are on the order of minutes.

This assumption of course ignores small scale turbulent motion which would fall below the

scale which is being sampled. This algorithm also assumes that the important features will

be in the horizontal plane. This assumption was previously applied to atmospheric model

data in [9, 10, 30] and atmospheric measurements in [15]. It is based on the fact that the

vertical component of the wind velocity tends to be two orders of magnitude less than the

horizontal components.

Figure 3.4: Schematic showing positions where velocity measurements were made and the
position of the circle gradient frame to the reference frame.

This algorithm takes as inputs:

• a scalar field measured along a circular arc, f(θ), as an n × 1 array input, where n is

the number of measurements taken,

• the angle θ as a monotonically decreasing n× 1 array input,

• and the radius of the circular arc, r, which is assumed to be constant, as a scalar input.
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Note, this algorithm is currently written for a clockwise trajectory. The algorithm starts

with an initial point along the circular arc (r, θ0) and the value f at that point. Then,

provided the path continues for at least another three quarters of a circle, the value of f is

obtained at 3 additional points along the path at (r, θ0 − 1
2
π), (r, θ0 − π), and (r, θ0 − 3

2
π).

With f at 4 individual points along the circular arc, a central finite-difference scheme is used

to approximate the gradient of f at the center point of the circle. Since the 4 points are

along an arc, each subsequent approximation the gradient will be in a reference frame which

has a different orientation from the initial gradient approximation, figure 3.4. To correct

for this apply a counterclockwise rotation to the gradient of f to obtain the gradient in a

consistent reference frame oriented North-South, East-West. Continue for each additional

point along the circular arc until there is less than an additional three quarters of a circle

left. A pseudo-code version of this algorithm can be found in Algorithm 3.1, and a schematic

can be found in figure 3.4.

Algorithm 3.1. Circle gradient, approximates the gradient of a scalar from samples along
an arc.
Input: r, θ, f(θ)
Output: Approximation of ∇f
1) for: i← 1 to length(θ) do
2) if θ(i)− 3

2
π ≥ θ(end) then

3) Obtain f(θ) at f (θ(i)) , f
(
θ(i)− 1

2
π
)
, f (θ(i)− π) , f

(
θ(i)− 3

2
π
)

4) ∂f
∂x′ ≈

f(θ(i))−f(θ(i)−π)
2·r

5) ∂f
∂y′ ≈

f(θ(i)− 3
2
π)−f(θ(i)− 1

2
π)

2·r

6) ∇f(i) ≈
[

cos(θ(i)) sin(θ(i))
− sin(θ(i)) cos(θ(i))

] [ ∂f
∂x′
∂f
∂y′

]
7) return ∇f
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2.3 Model Data

For the OSSE, velocity field data from the 3 km NAM model [31] is utilized. This velocity

field was from the portion the model over southwestern Virginia and was centered at the

Virginia Tech experimental site, Kentland Farm (figure 3.1), during a 215 hr period beginning

Sept 4th, 2017 at 00:00 UTC. The NAM data was divided into 2 data sets. The first part was

a strictly 2D data set that was restricted to the 850 mb isosurface. The second was a 3D data

set. Both data sets were interpolated in time from 1 hr resolution down to 10 min resolution

using cubic splines. The 3D data were then interpolated from pressure based vertical levels

to height above sea level (ASL) vertical levels using linear interpolation. Both data sets

were also interpolated from a 3 km horizontal resolution to a 300 m horizontal resolution

using cubic Lagrange polynomials. An aircraft is simulated using closed-loop trajectory

control to fly fixed-radius circles. These circles vary in radius from 2-15 km, smaller radii

more consistent with the federal regulations in FAA part 107 [32] were examined, however

the simulated wind velocity field lacked the spatial inhomogeneity necessary to compute

meaningful gradients below a 2 km flight radius. The simulated aircraft was also set to

track the 850 mb isosurface with the 3D wind velocity field acting as a disturbance. While

the altitude of the 850 mb isosurface varies in time, it is approximately at 1545 m ASL. A

subscale model of a transport-style aircraft, named the T-2 [33], was used as the simulated

unmanned aircraft. To get a sense of the aircraft’s scale, some of its physical properties are

mass m = 22.5 kg, wingspan b = 2.09 m, chord c̄ = 0.28 m, airspeed ||u|| ≈ 42 m/s.

With the T-2’s cruising airspeed of approximately 42 m/s, a full orbit takes between 300

to 2250 seconds, depending on the orbit radius. For a comparison, the average horizontal

windspeed of the NAM model at the 850mb isosurface was approximately 9.8 m/s. The
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details of the flight dynamic model are included in Appendix . The simulated wind measure-

ments taken by the aircraft are wind field components v along the aircraft’s center-of-mass

trajectory x(t). Figure 3.5 shows several orbits during the aircraft’s flight. Note that the

vertical dimension is scaled to be 500 times bigger than the horizontal, in order to show

flight path differences between consecutive orbits.

radius

Figure 3.5: Simulated 3D UAS flight path (solid blue line) along with a 2D perfect circle
(dotted black line). The 2D circle is at a constant altitude, while the 3D UAS flight tracks
the 850mb isosurface. The vertical dimension is shown highly exaggerated.
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2 km circle 5 km circle 10 km circle 15 km circle 2 km flight 5 km flight 10 km flight 15 km flight

center point 0.955 0.854 0.790 0.730 0.931 0.827 0.781 0.730
2 km circle -- 0.946 0.815 0.751 0.981 0.923 0.811 0.765
5 km circle -- 0.866 0.768 0.935 0.981 0.865 0.784
10 km circle -- 0.928 0.804 0.836 0.974 0.902
15 km circle -- 0.745 0.738 0.904 0.955
2 km flight -- 0.944 0.824 0.783
5 km flight -- 0.870 0.793
10 km flight -- 0.937

Table 3.1: Pearson correlation coefficients for trajectory divergence rate, ρ̇, measurements.
Coefficients range from 0.730 to 0.965.

3 Results

3.1 Approximating local Eulerian Metrics from UAS flights

This section presents results which indicate how well the attraction rate, s1, and the tra-

jectory divergence rate, ρ̇, can be approximated from a UAS flight. Figure 3.6 shows the

results for the trajectory divergence rate. From the 2D velocity field, restricted to the 850

mb isosurface, measurements along perfectly circular paths, with radii fixed between 2 km

and 15 km, were used to approximate the trajectory divergence rate, shown in black. Then,

velocity measurements from 3D simulated UAS flight paths with radii fixed between 2 km

and 15 km, attempting to follow the 850 mb isosurface, were used to approximate the trajec-

tory divergence rate, shown in blue. Finally, using the 850 mb isosurface velocity field, the

true trajectory divergence rate at the center point of the circle/flight radius was calculated,

shown in red. Pearson correlation coefficients for these measurements can be found in Table

3.1.

Figure 3.7 shows the results for the attraction rate. As before, using measurements along

perfectly circular paths, with radii fixed between 2 km and 15 km, from a 2D velocity

field restricted to the 850 mb isosurface, the attraction rate was approximated, shown in

black. Then, the attraction rate was approximated using velocity measurements from a 3D
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Figure 3.6: Comparison of measurements of the trajectory divergence rate ρ̇ at the center
point of the circular sampling orbit (red), along the path of a simulated UAS flight (black),
and along a circular arc (blue). The radius of the circle and flight path is shown in the lower
right hand corner of each time series. The circular arc and the simulated UAS flight are
nearly on top of each other.

simulated UAS flight paths, with radii fixed between 2 km and 15 km, attempting to follow

the 850 mb isosurface, shown in blue. Finally, using the 850 mb isosurface velocity field the

true attraction rate at the center point of the circle/flight radius was calculated, shown in

red. Pearson correlation coefficients for these measurements can be found in Table 3.2.
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Figure 3.7: Comparison of measurements of the attraction rate s1 at the center point of the
circular sampling orbit (red), along the path of a simulated UAS flight (black), and along a
circular arc (blue). The radius of the circle and flight path is shown in the lower right hand
corner of each time series. The circular arc and the simulated UAS flight are nearly on top
of each other.

3.2 Using Eulerian Metrics to infer Lagrangian Dynamics

In this section, results which indicate how well the attraction rate, s1, and the trajectory

divergence rate, ρ̇, predicts Lagrangian dynamics, such as the passage of LCSs are presented.

Figure 3.8 shows the time series for the trajectory divergence rate and backward-time FTLE

for integration times of 0.5, 1, and 2 hrs. Figure 3.9 shows the time series for the attraction

rate and backward-time FTLE for integration times of 0.5, 1, and 2 hrs. The FTLE values

have been multiplied by -1 for improved visualization. These values were calculated using
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2 km circle 5 km circle 10 km circle 15 km circle 2 km flight 5 km flight 10 km flight 15 km flight

center point 0.939 0.838 0.677 0.590 0.910 0.821 0.675 0.577
2 km circle -- 0.932 0.742 0.644 0.980 0.917 0.739 0.627
5 km circle -- 0.898 0.789 0.916 0.980 0.887 0.760
10 km circle -- 0.908 0.729 0.881 0.978 0.864
15 km circle -- 0.637 0.788 0.907 0.965
2 km flight -- 0.936 0.746 0.644
5 km flight -- 0.900 0.791
10 km flight -- 0.909

Table 3.2: Pearson correlation coefficients for attraction rate, s1, measurements. Coefficients
range from 0.577 to 0.939.

velocity data from the the 850 mb isosurface over the Kentland Farm portion of the NAM

model.
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Figure 3.8: Comparison of the trajectory divergence rate with the 0.5, 1, and 2 hr backward-
time FTLE from t=4 to t=215hrs. FTLE fields have been multiplied by -1 to offer better
comparison of attraction.

The effectiveness of the attraction rate and the trajectory divergence rate for detecting LCSs

was further explored using receiver operating characteristic (ROC) curves. ROC curves plots

the true positive rate against the false positive rate for different threshold levels. Figure 3.11

shows an example of a true positive and a false positive from this study. To define these
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Figure 3.9: Comparison of the attraction rate with the 0.5, 1, and 2 hr backward-time FTLE
from t=4 to t=215hrs. FTLE fields have been multiplied by -1 to offer better comparison of
attraction.

curves, we determined when LCSs passed within a threshold radius which ranged from 400

m to 10 km of the center point, figure 3.10. We further applied a threshold of 90% for the

LCSs, so only LCSs whose FTLE value was above the 90th percentile were considered. The

attraction rate’s and the trajectory divergence rate’s ability to detect LCSs for integration

times of 0.5, 1, and 2 hrs in backward-time was explored. Figure 3.12 shows an idealized

ROC curve with different threshold values, the farther the ROC curve is from the dotted

line the better the sensor is. This can be quantified using the area under the curve (AUC).

The larger the AUC is above 0.5, the better the sensor is; a perfect sensor would have an

AUC of 1.

Figure 3.13 shows ROC curves for the the trajectory divergence rate as measured from the

center point of the sampling area (figure 3.10). The threshold ranges from 0% at the upper

right hand corner to 100% at the lower left hand corner. Every 20th percentile is marked
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7.5 km threshold radius

2.0 km UAS flight

0.8 km threshold radius

Center point

Attracting LCS

Figure 3.10: Schematic of LCS detection showing two examples of threshold radii as dashed
lines. An attracting LCS falls within the larger threshold radius but does not fall within the
smaller radius. The instantaneous wind field is depicted as the background vector field.

with a dot. Each subplot represents a different threshold radius, with radii ranging from 400

m to 10 km. Each color represents a different integration time for the LCSs, 0.5 hr green, 1

hr red, 2 hr blue. The AUC ranges from 0.477 to 0.756.

Figure 3.14 shows ROC curves for the attraction rate as measured from the center point of

the sampling area (figure 3.10). As before, the threshold is applied to the attraction rate

ranging from 0%, upper right hand corner, to 100%, lower left hand corner. Every 20th

percentile is marked with a dot. Each subplot represents a different threshold radius, with

radii ranging from 400 m to 10 km. Each color represents a different integration time for

the LCSs, 0.5 hr green, 1 hr red, 2 hr blue. The AUC ranges from 0.626 to 0.850.
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Figure 3.11: Depiction of a true positive (left) and a false positive (right), from approximately
43.5 hrs and 20.67 hrs respectively. The true attraction rate field over Kentland Farm Va. is
displayed, darker greens are lower values of the attraction rate. Grid points where the value
of the attraction rate is above the threshold value are masked (white). Attracting LCS with
an integration time of -1 hr are shown as blue lines. The threshold radius is shown by the
black dashed circle and has a radius of 5 km. In both examples the attraction rate at the
center of the sampling domain is below the threshold value, thus meeting the criterion for
a positive identification of an LCS passing within the threshold radius. In the true positive
example there is an LCS passing within the threshold radius. Meanwhile, in the false positive
there is no LCS within the threshold radius. The ROC plot point for the particular case
shown in this figure (i.e. threshold value and radius) is depicted by a red “+” marker in
figure 3.14.

3.3 Inferring Lagrangian Dynamics from UAS measurements

This section presents results which indicate how well the attraction rate, s1, and the trajec-

tory divergence rate, ρ̇, as approximated from a UAS flight predicts Lagrangian dynamics,

such as the passage of LCSs, figure 3.10. Figure 3.15 shows ROC curves for the the trajec-

tory divergence rate as calculated from a simulated 2 km radius UAS flight. The threshold

ranges from 0% at the upper right hand corner to 100% at the lower left hand corner. Every

20th percentile is marked with a dot. Each subplot represents a different threshold radius,
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Figure 3.12: Schematic of an idealized ROC curve and with threshold percentiles.

with radii ranging from 400 m to 10 km. Each color represents a different integration time

for the LCSs, 0.5 hr green, 1 hr red, 2 hr blue. The AUC ranges from 0.491 to 0.742.

Figure 3.16 shows ROC curves for the attraction rate as calculated from a simulated 2 km

UAS flight. As before, the threshold is applied to the attraction rate ranging from 0%, upper

right hand corner, to 100%, lower left hand corner. Every 20th percentile is marked with a

dot. Each subplot represents a different threshold radius, with radii ranging from 400 m to

10 km. Each color represents a different integration time for the LCSs, 0.5 hr green, 1 hr

red, 2 hr blue. The AUC ranges from 0.602 to 0.874.

4 Discussion

Looking at the results in figure 3.6, we can see that the simulated UAS flight in 3D space

provides a very similar result to the circular path restricted to the 850 mb isosurface. For
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Figure 3.13: ROC curves for the trajectory divergence rate, ρ̇, as measured at the center
point ability to detect 90th percentile LCSs with integration times of 0.5 (green), 1 (red),
and 2 (blue) hrs. Threshold radii are displayed in the upper left hand corner. The AUC for
each integration time is given in the legend.

all the radii that were analyzed, the trajectory divergence rate from the flight simulation

is nearly identical to that from the 2D circular path. Most of the error between the center

point trajectory divergence rate and the estimate from the 3D flights appears to be due to

the distance from the point of estimation, rather than inconsistencies in the flights path due

to the UAS being buffeted by wind. This can also be seen in Table 3.1, where the correlation

coefficients between the simulated flight and the 2D circle are all > 0.95, while there is a
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Figure 3.14: ROC curves for the attraction rate, s1, as measured at the center point ability
to detect 90th percentile LCSs with integration times of 0.5 (green), 1 (red), and 2 (blue) hrs.
Threshold radii are displayed in the upper left hand corner. The AUC for each integration
time is given in the legend. The red “+” marker corresponds to the plot point for the case
(i.e. threshold value and radius) that was shown in figure 3.11.

steady drop in the correlation coefficients with the center point trajectory divergence rate

as the radius increases.

Looking at the results in figure 3.7, we see that the simulated UAS flight in 3D space

provides very similar attraction rate measurements to the circular path restricted to the 850

mb isosurface. As before, for all the radii paths that were examined, the attraction rate from
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Figure 3.15: ROC curves for the trajectory divergence rate, ρ̇, as measured from a 2 km
radius UAS simulation ability to detect 90th percentile LCSs with integration times of 0.5
(green), 1 (red), and 2 (blue) hrs. Threshold radii are displayed in the upper left hand
corner. The AUC for each integration time is given in the legend.

the flight simulation is nearly identical to that from the 2D circular path. Most of the error

between the center point attraction rate and the estimate from the 3D flights appears to be

due to the distance from the point of estimation, rather than inconsistencies in the flights

path due to the UAS being buffeted by wind. This can also be seen in Table 3.2, where the

correlation coefficients between the simulated flight and the 2D circle are all > 0.96, while

there is a steep drop in the correlation coefficients with the center point attraction rate as
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Figure 3.16: ROC curves for the attraction rate, s1, as measured from a 2 km radius UAS
simulation ability to detect 90th percentile LCSs with integration times of 0.5 (green), 1
(red), and 2 (blue) hrs. Threshold radii are displayed in the upper left hand corner. The
AUC for each integration time is given in the legend.

the radius increases.

Both the attraction rate and the trajectory divergence rate at a point can be approximated to

a high degree of accuracy by UAS flights. Simulated 3D UAS flights provided measurements

which were nearly identical to those of perfect circular 2D paths. The main cause of error in

the approximations appears to be the radius of the circular arc. Furthermore, the trajectory

divergence rate appears to be a more robust metric than the attraction rate; meaning that the



100
Chapter 3. A Method for Detecting Atmospheric Lagrangian Coherent

Structures using a Single Fixed-Wing Unmanned Aircraft System

trajectory divergence rate can be better approximated at larger radii than the attraction rate

can. This can be seen very clearly in Tables 3.1 and 3.2, where the correlation coefficient for

the attraction rate drops off more quickly with flight radius than for the trajectory divergence

rate.

As mentioned previously, the smallest flight radius which was explored in this study was 2

km. This radius was chosen because under 2 km the spatial inhomogeneity of the simulated

velocity field was insufficient to compute meaningful gradients. However, under current

federal regulations in FAA part 107, unaided visual contact must be maintained with the

UAS [32]. For smaller UASs, it is unlikely that an operator would be able to satisfy this

requirement at a flight radius of 2 km. Fortunately, these results suggest that as the flight

radius is decreased the UAS approximation of the Eulerian diagnostic will converge the true

value at the center point. Thus, we anticipate that in real-world experiments, where the flight

radius will be O(100m), a single fixed-wing UAS will provide a very accurate approximation

to the Eulerian diagnostics at the center point.

Figure 3.8 shows that the trajectory divergence rate does not always follow the trend of the

negative backward-time FTLE. This is to be expected, as the trajectory divergence rate gives

information on both instantaneous attraction and repulsion, while the negative backward-

time FTLE gives only a measure of attraction. The trajectory divergence rate does, however,

agree with the negative backward-time FTLE during periods of significant (large) attraction.

This behavior is of particular interest for the detection of LCSs. When calculating LCSs,

there is often a multitude of weaker, less important LCSs. In order to filter out these less

important structures and focus on important structures, one often needs to set a threshold

value for the FTLE field. These dips in the the trajectory divergence rate, coinciding with

the strongest dips in the negative backward-time FTLE, would therefore seem to be a likely

indicator of the most influential LCS.
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Figure 3.9 shows that the attraction rate follows the general trend of the negative backward-

time FTLE. This is consistent as both the attraction rate and the negative backward-time

FTLE give measures of attraction. The attraction rate appears to give a good approximation

to the negative backward-time FTLE, and thus should be able to give indications of LCSs.

The ROC curves in figure 3.13 show that the trajectory divergence rate, calculated at a

point, can be used to detect the passage of LCSs. For the smaller threshold radii, AUC

values for the ROC curves of greater than 0.6 are consistently seen. This means that this

method is outperforming random guessing, which would have an AUC of 0.5. Of course as

the threshold radius increases the AUC trends to 0.5. This convergence to random chance at

larger thresholds is consistent, since as the sample area increases, the likelihood of an LCS

being within that domain will converge to 100%, at least for realistic atmospheric flows.

The ROC curves in figure 3.14 show that the attraction rate, calculated at a point, cannot

only be used to detect the passage of LCSs, but that it performs better at LCS detection

than the trajectory divergence rate does. The smaller and more moderate threshold radii

consistently display AUC values for the ROC curves of greater than 0.7, and many well over

0.8. This means that this method is far outperforming random guessing. Once again, it can

be seen that as the threshold radius increases the AUC trends towards 0.5, although this

convergence is happening slower than it did with the trajectory divergence rate.

It should be noted that both the attraction and trajectory divergence rates seem to perform

best at a threshold radius of around 800-2000 m and become noisier as the radius decreases.

We suspect that this is due to the spatial and temporal scales of the input data, 3 km x 1

hr grid spacing. We speculate that with a velocity field that is either analytically defined or

more highly resolved in both space and time, continued improvement in the ROC curves as

the threshold radius decreases would be seen. Unfortunately, higher resolution model data

was unavailable for this study and the analytical models currently used in the study of LCSs
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in 2D, such as the double gyre [34] and the Bickley jet [35], do not have the requisite spatial

inhomogeneity necessary to reveal meaningful Eulerian structures in the attraction rate or

the trajectory divergence rate fields.

The ROC curves in figure 3.15 show that the trajectory divergence rate, as calculated from

a simulated 2 km UAS flight, can be used to detect the passage of LCSs. For the smaller,

and even more moderate, threshold radii, AUC values for the ROC curves of greater than

0.6 are consistently seen. This means that this method is outperforming random guessing.

Of course as the threshold radius increases the AUC trends to 0.5.

The ROC curves in figure 3.16 show that the attraction rate, as calculated from a simulated

2 km UAS flight, cannot only be used to detect the passage of LCSs, but once again performs

better at LCS detection than the trajectory divergence rate does. For the smaller and more

moderate threshold radii consistently display AUC values for the ROC curves of greater

than 0.7, and many well over 0.8. This means that this method is outperforming random

guessing. Once again, as the threshold radius increases the AUC trends towards 0.5, although

this convergence is happening slower than it did with the trajectory divergence rate.

5 Conclusions

We have put forward a novel algorithm to approximate the gradient of a scalar field using

measurements from a circular arc around a point. Using realistic atmospheric velocity data

from the NAM 3 km model, this algorithm was applied to circular trajectories restricted

to a 2D isosurface and simulated UAS flights in 3D, with radii ranging from 2 km to 15

km. From these results the trajectory divergence rate and the attraction rate was approx-

imated for the center point of these paths. Comparing these approximations with the true

trajectory divergence rate and attraction rate at the center point, we found that both the
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realistic flight simulator and the circle give nearly identical approximations. Furthermore,

the approximations were very good for the smaller radii that were looked at, but even the

larger radii approximations were able to pick up the trend of the trajectory divergence rate

and attraction rate, though they underestimated the magnitude.

We have also examined the ability of Eulerian diagnostics, in particular the trajectory di-

vergence and attraction rates, to infer Lagrangian dynamics. Using ROC curves, the ability

of the trajectory divergence rate and attraction rate, as calculated at a point, to detect the

passage of LCSs within a threshold radius was explored. We found that the attraction rate

can be used as an effective tool to detect short term LCSs passing by. We also found that

the trajectory divergence rate, while performing better than chance, underperformed the at-

traction rate. This analysis was then extended to look at the trajectory divergence rate and

attraction rate as approximated by a UAS flight. Once again we found that these Eulerian

diagnostics, as approximated by a UAS flight, can be an effective tool for detecting LCSs

passing through a sampling area.

This manuscript serves as a first step towards in-situ detection of LCSs in the atmosphere.

It demonstrates that a single fixed-wing UAS can, in principle, be used to measure Eulerian

diagnostics of a local atmospheric flow. These Eulerian diagnostics can then be used to

infer the Lagrangian dynamics of the local flow. Future work will apply this manuscript’s

techniques to experimental data to detect real-world atmospheric LCSs using a fixed-wing

UAS, evaluate the effects of sensor uncertainty on the accuracy of LCS detection, and extend

the analysis to the detection of pollutant specific LCSs [5, 12, 36].
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Appendix B

The aircraft flight dynamic model is derived by combining standard aircraft rigid-body equa-

tions [37] with Grauer and Morelli’s Generic Global Aerodynamic model [33], modified for
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non-uniform wind. The important flight dynamic modeling assumptions are:

1. Earth is a flat, inertial reference.

2. The aircraft is a rigid body, symmetric about its longitudinal plane, with constant

mass m.

3. For wind-aircraft interaction, the aircraft is a point “located” at it’s center-of-mass.

4. The wind is described by a C1-smooth kinematic vector field.

5. Aircraft thrust fth is an instantaneously-controllable force acting nose-forward from

the center-of-mass.

6. All parameters are invariant with altitude. (e.g. no altitudinal variation of density ρ,

gravity g, ground-effect, etc.)

The resulting dynamic equations of motion are

RBM(α)


CD(. . .)

CY (. . .)

CL(. . .)

 1

2
ρ‖Vr‖2S +


fth %(fth max

100%
)

0

0

+RT
EB(Θ)


0

0

mg

 = m

(
V̇ + (ω×V )

)
,

(3.10)


b 0 0

0 c̄ 0

0 0 b



Cl(. . .)

Cm(. . .)

Cn(. . .)

 1

2
ρ‖Vr‖2S =


Ixx 0 −Ixz
0 Iyy 0

−Ixz 0 Izz

 ω̇ +
(
ω ×


Ixx 0 −Ixz
0 Iyy 0

−Ixz 0 Izz

ω
)
.

(3.11)

where the ellipses on the aerodynamic coefficients remind the reader that these are functions

of state variables, as given below in Equations 3.14 – 3.19. The symbol V is used for
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inertially-referenced velocity, and Vr is used for air-relative velocity. The notation RBM(α)

represents the rotation matrix, which depends on of angle-of-attack α, from the aircraft’s

body-frame to the modified-stability frame in which Grauer and Morelli’s aerodynamic forces

are defined. Similarly, REB(Θ) is the rotation matrix from the Earth frame to the aircraft’s

body frame. The rest of the notation is in agreement with Etkin [37]. These dynamics are

combined with standard translational and rotational kinematic equations

Ẋ = REB(φ, θ, ψ)


u

v

w

 = REB(Θ)V , (3.12)

Θ̇ =


φ̇

θ̇

ψ̇

 =


1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ



p

q

r

 = L−1(φ, θ)ω. (3.13)

The aerodynamic coefficient expressions are from Equation 20 of Grauer and Morelli [33]

CD = θ1 + θ2α + θ3αq̃r + θ4αδe + θ5α
2 + θ6α

2q̃r + θ7α
2δe + θ8α

3 + θ9α
3q̃r + θ10α

4, (3.14)

CY = θ11β + θ12p̃r + θ13r̃r + θ14δa + θ14δr, (3.15)

CL = θ16 + θ17α + θ18q̃r + θ19δe + θ20αq̃r + θ21α
2 + θ22α

3 + θ23α
4, (3.16)

Cl = θ24β + θ25p̃r + θ26r̃r + θ27δa + θ28δr, (3.17)

Cm = θ29 + θ30α + θ31q̃r + θ32δe + θ33αq̃r + θ34α
2q̃r + θ35α

2δe + θ36α
3q̃r + θ37α

3δe + θ38α
4,

(3.18)

Cn = θ39β + θ40p̃r + θ41r̃r + θ42δa + θ43δr + θ44β
2 + θ45β

3. (3.19)

In these equations (θ1, θ2, . . . θ45) are the aircraft parameters, (α, β) are the standard aerody-

namic angles, (p̃r, q̃r, r̃r) are wind-relative non-dimensionalized angular rates, and (δa, δe, δr)
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are aileron, elevator, and rudder deflections.
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abstract

Concentrations of airborne chemical and biological agents from a hazardous release are not

spread uniformly. Instead, there are regions of higher concentration, in part due to local

atmospheric flow conditions which can attract agents. We equipped a ground station and

two rotary-wing unmanned aircraft systems (UASs) with ultrasonic anemometers. Flights

reported here were conducted 10 to 15 meters above ground level (AGL) at the Leach Airfield

in the San Luis Valley, Colorado as part of the Lower Atmospheric Process Studies at Ele-

vation - a Remotely-Piloted Aircraft Team Experiment (LAPSE-RATE) campaign in 2018.

The ultrasonic anemometers were used to collect simultaneous measurements of wind speed,

wind direction, and temperature in a fixed triangle pattern; each sensor was located at one

apex of a triangle with ∼ 100 to 200 meters on each side, depending on the experiment. A

WRF-LES model was used to determine the wind field across the sampling domain. Data
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from the ground-based sensors and the two UASs were used to detect attracting regions (also

known as Lagrangian Coherent Structures, or LCSs), which have the potential to transport

high concentrations of agents. This unique framework for detection of high concentration

regions is based on estimates of the horizontal wind gradient tensor. To our knowledge, our

work represents the first direct measurement of an LCS indicator in the atmosphere using

a team of sensors. Our ultimate goal is to use environmental data from swarms of sensors

to drive transport models of hazardous agents that can lead to real-time proper decisions

regarding rapid emergency responses. The integration of real-time data from unmanned

assets, advanced mathematical techniques for transport analysis, and predictive models can

help assist in emergency response decisions in the future.

1 Introduction

Atmospheric wind velocity measurements are critical to air quality [1], weather forecasting

[2], and climate studies [3]. Unmanned aircraft systems (UASs) are an emerging technology

for atmospheric wind velocity measurements near the surface of Earth [4] where it is difficult

and expensive to operate conventional atmospheric sensors reliably. Small UASs, both fixed-

and rotary-wing, are low-cost, mobile, and portable with some trade-offs involving flight

characteristics. Fixed-wing UASs can fly for periods of around 45 minutes continuously, but

are limited by their flight envelope to open-space operations for launch, maneuvering, and

recovery. Rotary-wing UASs can hover, allowing for operations in complex environments,

but have limited battery power and generally have shorter flight periods.

Efforts to measure atmospheric properties with UASs began as early as 1971 with [5] using a

small fixed-wing platform to carry sensors for direct measurements of atmospheric properties

[6]. Similar studies have since followed suit using different mission-specific aircraft designs as
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detailed in [6]. More recently, indirect approaches have been developed to infer wind velocity

using model-based state estimation algorithms. These methods have implemented, among

others, the Extended Kalman Filter [7], Unscented Kalman Filter [8], or Finite Horizon

Filter [9] to reconstruct wind velocity estimates from inertial and airspeed aircraft sensor

measurements. In general, both direct and indirect approaches have yielded promising results

as sensor technology continues to advance.

Direct methods of wind estimation encompass the integration of atmospheric flow sensors

directly onto the rotary-wing platform [10, 11]. This method has been tested using vane [12],

solid-state [13, 14], hot-wire [10], and sonic anemometers [10, 12] as part of sensor placement

studies. Results from experiments have demonstrated sensor location to be critical as the

propeller downwash can corrupt measurements of ambient wind velocity. Indirect methods,

on the other hand, measure wind velocity employing model-free and model-based algorithms.

Model-free algorithms render wind velocity measurements from a static relationship between

tilt and air-relative velocity [15, 16] or the angular kinematics accessed from on-board inertial

measurement unit (IMU) sensors [16, 17]. Model-based algorithms, in contrast, use a physics-

based model along with aircraft state measurements to reconstruct wind velocity using a state

observer [18, 19, 20].

Analyzing atmospheric flows can be challenging due to their chaotic nature. Lagrangian

coherent structures (LCSs) have become an increasingly popular tool for the analysis of

atmospheric systems. LCSs provide a way to visualize how particles in a flow will evolve;

they constitute the skeleton of the flow pattern, particularly regions which are attracting

or repelling of nearby fluid, as in figure 4.1. For instance, attracting LCSs can correspond

to regions of enhanced concentrations of some atmospheric borne chemical species, such as

water vapor, pollutants, or hazardous material. Previous work [21, 22, 23, 24, 25, 26, 27, 28]

has shown that LCSs tend to coincide with ridges of the finite-time Lyapunov exponent
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Fluid parcel

Attracting

LCS

Figure 4.1: Schematic illustration of an attracting LCS, and its effect on a fluid parcel over
a short advection time.

(FTLE) field, which measures the stretching of an air parcel as it advects under the wind.

Recently, new Eulerian methods have been developed to detect regions of high attraction and

repulsion in fluid flows without the need for simulating air particle paths. These methods are

based on the horizontal wind velocity gradient and can be used to calculate an instantaneous

approximation to Lagrangian quantities such as LCSs or the FTLE field [29, 30, 31]. We will

take advantage of these Eulerian methods to look for potential LCSs in the experimental

results presented here.

Measurements used in this campaign were obtained between 14-19 July, 2018 as part of a

community-centric field experiment. This experiment was organized in association with the

with the International Society for Atmospheric Research using Remotely-Piloted Aircraft

(ISARRA) conference held the week before at the University of Colorado Boulder. This

“flight week”, titled Lower Atmospheric Process Studies at Elevation - a Remotely-piloted

Aircraft Team Experiment (LAPSE-RATE) took place in the San Luis Valley, Colorado.

This activity included participation by a variety of university, government, and industry

teams. Over the course of six days, over 100 participants supported the coordinated deploy-

ment of 50 different unmanned aircraft to complete 1287 total flights, accumulating 262.4
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flight hours. These flights were conducted under both Federal Aviation Administration

(FAA) Certificates of Authorization (COAs) and FAA Part 107, with the COAs generally

supporting flights up to altitudes of 3000 feet above ground level. In addition to the aerial

assets, a variety of ground-based observational assets were deployed. These included the

Collaborative Lower Atmospheric Mobile Profiling System (CLAMPS), two Doppler Lidar

systems, numerous radiosondes, and mobile surface instrumentation associated with vehicles

and small towers. Over the course of the week, flight operations spanned a large ( 3500 km2)

area over the northern San Luis Valley. The open space around Leach Airfield supported

the simultaneous deployment of several aircraft at a time, with these platforms operating

alongside several ground-based measurement systems as well as regular radiosonde launches

to provide comparison datasets using well-characterized methods and sensors.

In this manuscript, we describe the use of multiple UASs equipped with ultrasonic anemome-

ters to measure wind and temperature and forecast LCSs. The specific objectives of this

work were to: develop and deploy multiple UASs equipped with ultrasonic anemometers

to measure wind speed, wind direction, and temperature; compare data from the sonic

anemometers onboard the UAS against two different ground-based weather stations and a

weather research and forecasting large eddy simulation (WRF-LES) model; and conduct

a series of coordinated UAS flights to detect LCSs based on estimates of the horizontal

wind gradient tensor. Our ultimate goal is to use environmental data from UASs to drive

atmospheric transport models of hazardous agents that can lead to appropriate decisions

regarding rapid emergency responses.
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Figure 4.2: Schematic of Inspire 2 sampler assembly. An interactive 3D version can be found
at https://a360.co/2OnKTl4

2 Materials and Methods

2.1 Sensor Package onboard UAS

Two Inspire 2 quadcopters (DJI, Shenzhen, China) were each equipped with an Atmos

22 ultrasonic anemometer (Meter Environment, Pullman, WA) and a Microlog SDI MP/E

datalogger (Environmental Measuring Systems, Czech Republic). The Inspire 2 quadcopters

were registered with the FAA; registration numbers FA37XL79KC and FA3KHWTTCY. The

sensor package was mounted to the airframe of the UAS using carbon fiber rods and cus-

tom 3d-printed pieces (found at https://github.com/SchmaleLab/Schmale-Lab-3D-Printing-

Files-Nolan-et-al-Sensors-2018). The Atmos 22 weighed 424 grams and was 10 cm in diameter

by 16 cm in height. The anemometer measured horizontal wind speed from 0 to 30m s−1

with a resolution of 0.01m s−1 ±0.3m s−1 or 3% and wind direction from 0 to 359◦ with a

resolution of 1◦ ±5◦. The datalogger recorded measurements every 15 seconds. A structure

was developed to mount the anemometer to the DJI Inspire 2 using a 30 cm long by 3.8 cm
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Figure 4.3: Calibration flight with vertical array of sensors at 10 m (UAS with Atmos 22
sonic anemometer), 4 m (Atmos22 sonic anemometer), and 2 m (CSAT3 sonic anemometer)
(left). White arrows indicate the sensors at each of the respective heights. Calibration flight
(B2) with one ground-based sensor on the MURC tower and one UAS, both at 15 m (right).
White arrows indicate the sensors for each of the platforms.

wide polypropylene tube, 3D printed components and carbon fiber tubes. The anemometer

was mounted to the top of the polypropylene tube and the data logger was mounted to the

tube below the anemometer. Four carbon fiber mounting arms attached the pole vertically

to the Inspire 2 using stainless steel bolts: one directly below the vertical tube, one to each

left and right arm, and one to the rear of the Inspire 2 main body. The data logger was set

to record continuously before each flight.
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Figure 4.4: Simultaneous flights with sensors in a triangle formation (white arrows). Both
UASs were operating off of marks on the taxiway, and the MURC tower was stationed north
of the UAS operations.

2.2 Permissions for Flight Operations

The six counties of the San Luis Valley (SLV), through the support of UAS Colorado and

CU Boulder, established a UAS program in 2014 including extensive FAA Permits to op-

erate UASs under public entity Certificates of Authorization (COAs) in a 5,100,000 square

mile area of the valley up to 15,000 ft MSL, which equates to about 7,500 ft AGL in the

central valley. All flights were deconflicted with Local Crop-Dusting Operations, military

low altitude training operations along VR routes, routine daily airline operations in and out



2. Materials and Methods 123

of KALS, and Local Flight For Life as well as private aircraft operations in the area. UAS

pilots for the missions reported in this manuscript were certified Remote Pilots under Part

107; (Schmale, Certificate Number 4038906; González-Rocha, Certificate Number 4010055).

2.3 Coordinated aerial and ground-based measurements

Calibration flight with vertical array of sensors at 10 m (UAS), 4 m (Ground),

and 2 m (Ground)

One UAS flight (UAS B1,Table 4.1) was conducted over a 4 m flux tower with sensors at fixed

heights of 4 m (Atmos 22 sonic anemometer package) and 2 m (CSAT-3 sonic anemometer

from Campbell Scientific) (figure 4.3). The accuracy of the CSAT-3 was between±2 and±6%

with ±0.08m s−1 bias precision. Output from the CSAT-3 was logged at 20 Hz via RS232

using a Kangaroo PC portable computer mounted in a weatherproof enclosure. Additional

measurements of temperature and humidity were provided at 2 m via a Campbell Scientific

E+E Electronik EE181 digital probe (±0.2◦C, ±2.3%RH). This sensor was supplemented by

two Campbell Scientific CS215 digital sensors (±0.4◦C, ±4%RH) located 1.5 m and 0.75 m

above ground level. All temperature and humidity sensors were housed in a solar radiation

shield and logged every 3 seconds via a Campbell Scientific CR1000X measurement and

control data logger. Additional sensors on the flux tower logged every 3 s, but not used

in the present study, included a Setra 278 digital barometer, Kipp and Zonen NR-LITE2

Net Radiometer, two Hukeseflux HFP01 Soil Heat Flux Plates, a Campbell Scientific CS655

water content reflectometer, and Campbell Scientific TCAV averaging soil thermocouple

probe. All sensors were factory calibrated within one year of use, although intercomparison

measurements in a laboratory environment revealed that the EE181 sensor had a consistent

0.5◦C bias which was removed from the measurements reported here.
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Calibration flights with one ground-based sensor at 15 m (MURC) and one UAS

at 15 m

Two UASs flights (UAS A2 and UAS B2, Table 4.1) of about 10 min at 15 m AGL were con-

ducted adjacent to the Mobile UAS Research Collaboratory (MURC) tower (figure 4.3). The

MURC is equipped with a 15 m extendable mast containing several meteorological sensors

including a Gill MetPak Pro Base Station that provided barometric pressure, temperature,

and humidity; a Gill 3D sonic anemometer for 3D wind measurements; and an R.M. Young

Wind Monitor anemometer which provided a redundant horizontal wind measurement.

Simultaneous flights with sensors at 15 m in a triangle formation (two UASs,

and two ground sensors)

Eight coordinated flights (Table 4.1) were conducted at 15 m AGL in a fixed triangle pattern

(each sensor was located at one apex of a triangle with about 100 to 200 meters on each

side, depending on the experiment) (figure 4.4).

2.4 WRF-LES model

Version 3.9.1.1 of the Weather Research and Forecasting (WRF) model [32, 33] was used to

downscale mesoscale flows to predict the evolution of winds and turbulence in the boundary

layer during ISARRA flight week. The model set up was similar to that described by [34].

We used the nesting configuration to downscale operational forecast from 3 km resolution

NOAA/NCEP High Resolution Rapid Refresh (HRRR) to a resolution of 111 m using 45

vertical levels. The vertical levels were spaced to maximize resolution in the lowest 2 km

of the atmosphere. The nests were configured using one-way feedback (coarse mesh to fine

mesh only). Following [34], a refinement ratio of 10 was used between the WRF-LES grid
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and its parent domain in order to minimize the impact of the terra incognita range of grid

resolutions for which boundary layer parameterizations were not designed [35]. Boundary

layer turbulence in D01 was parameterized using the MYNN2 boundary layer while unre-

solved turbulence in D02 was computed using a sub-grid scale (SGS) closure that includes

a prognostic equation for turbulent kinetic energy following [36]. The land surface type was

specified using the 20-category MODIS land use dataset. Model forecast data was output

at each grid point every 10 min. A higher output rate (0.66 sec) was enabled at select grid

points that were coincident with ISARRA profiling sites including Leach Airfield. Data used

in this study were obtained from WRF-LES runs initialized at 11:00 UTC using HRRR data

to initialize and drive the lateral boundaries of the downscaling system. The HRRR is a

rapidly-updating forecast system that uses 3DVAR data assimilation to incorporate a wide

range of observations to produce a new 18 hour forecast every hour [37]. The outer grid of

the downscaling system, with 1 km grid spacing, was run for 6 hours to spin up dynamically-

balanced forcing which was then used to initialize and force the inner-most WRF-LES grid.

Data from the forecasts were interpolated to a set of heights above the ground (including 30,

80 and 150 m AGL) and were also interpolated from the Lambert Conformal computational

grid onto a regularly spaced grid using bilinear interpolation.

2.5 Lagrangian-Eulerian analysis

Due to their chaotic nature, time-dependent unsteady fluid flows such as atmospheric flows

can be challenging to analyze. As mentioned in the introduction, Lagrangian methods such

as LCS and the FTLE field have become popular tools to analyze the transport of particles

in such flows. Calculating the FTLE field requires Lagrangian data, i.e., numerically sim-

ulating the advected paths of fluid particles. The integration of particle trajectories tends

to be computationally expensive and necessitates a greater degree of spatial and temporal
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information than can reasonably be gathered by operators in the field.

New Eulerian tools have recently been developed which use velocity gradients, instead of

integrating particle trajectories. This allows for flows to be analyzed by pointwise measure-

ments at as few as three points. These velocity gradients are assembled into the Eulerian

rate-of-strain tensor, S in eq. (4.3) discussed below. In [30] it is shown that S can provide

an instantaneous approximation of the Lagrangian dynamics of a fluid flow. Ref [30] further

states that we should seek objective Eulerian coherent structures (OECSs) based on the

invariants of S, as short-term limits of LCSs. Further work on this topic [31] has also shown

that in two-dimensional flows, the eigenvalues of S, s1 <s2, are the limits of the backward-

time and forward-time FTLE fields as integration (advection) time goes to zero. Ref [31]

further posits that troughs of the s1 field can be identified as instantaneous attracting LCSs

and ridges of the s2 field can be identified as instantaneous repelling LCSs. For the remainder

of this manuscript we shall refer to s1 as the attraction rate and s2 as the repulsion rate.

For our analysis we be considering the fluid particle advection dynamical system,

d

dt
x = v(x, t), (4.1)

x0 = x(t0). (4.2)

In this system x(t) is the position vector of a fluid parcel at time t and v(x, t) is the horizontal

wind velocity vector at position x(t), time t. We define the components of the horizontal

position vector, x = (x, y), where x is the eastward position and y is the northward position,

measured either in meters with respect to some convenient reference point or in longitude and

latitude, respectively. We will analyze this system by looking at the attraction rate, which

is the minimum eigenvalue, s1, of the Eulerian rate-of-strain tensor, S(x, t). The Eulerian
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rate-of-strain tensor is defined based on the horizontal wind gradient,

∇v(x, t),

as

S(x, t) = 1
2

(
∇v(x, t) +∇v(x, t)T

)
. (4.3)

As stated before, the attraction rate provides a means of identifying the attracting OECSs,

which are the instantaneous LCSs. The attraction rate provides information on where mate-

rial particles will converge (figure 4.1). The lower the value of the (negative) attraction rate,

the more particles will be attracted to that point. We focus on the attraction rate given its

importance for predicting enhanced concentrations of atmospherically advected tracers, as

nearby particles will converge onto those features and flow with them as opposed to repelling

features which particles will diverge from before flowing independent of those features.

2.6 Computation of Wind Gradient and Attraction Rate

In order to calculate the attraction rate we first needed to calculate the gradient of the wind

velocity field, ∇v(x, t), for the spatiotemporally varying wind velocity vector v(x, t) = (u, v),

where u is the eastward wind component and v is the northward wind component. For

an estimate of the gradient, three measurements of the wind velocity were simultaneously

recorded by two UASs and one ground station. The wind velocity data taken from these

measurements was then interpolated to a fourth point between the three sensors, figure 4.5.

This point is chosen to be along a north-south line with one of the sensors and an east-west

line with another. A depiction of the true situation based on a satellite photo can be seen

in figure 4.6.
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Sensor B

Sensor C

Sensor A

Interpolated Point

Figure 4.5: Schematic of how the velocity gradient, ∇v(x, t), was computed from sensor
measurements. Using wind measurements from three independent sensors, a linear function
was generated for a triangular element. This function was then used to interpolate the wind
to an interpolated point. A finite-difference scheme, eq. 4.4, was then used to calculate the
gradient of the two components, u and v, of the horizontal wind.

The velocity was interpolated to the fourth point using linear interpolation provided by

the griddata routine from Python’s SciPy module. Once the velocity was interpolated, the

gradient of the velocity field was calculated using a finite-difference scheme between the

velocity at the interpolated point and the velocity from the sensors directly north/south and

east/west. For example, with the setup shown in figure 4.5, the gradient of u is calculated

as

∂u

∂x
≈ uinterp − uB

dx
,

∂u

∂y
≈ uinterp − uC

dy
, (4.4)

where uinterp is u at the interpolated point, uB is u at sensor B, and uC is u at sensor C.

This method could then be applied to v as well to get the full horizontal gradient of the
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wind vector,

∇v =

∂u∂x ∂u
∂y

∂v
∂x

∂v
∂y

 , (4.5)

and the Eulerian rate-of-strain tensor,

S =

 ∂u
∂x

1
2

(
∂u
∂y

+ ∂v
∂x

)
1
2

(
∂u
∂y

+ ∂v
∂x

)
∂v
∂y

 . (4.6)

The attraction rate, s1 is then given analytically by

s1 = 1
2

(
∂u
∂x

+ ∂v
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2.7 Uncertainty Analysis

We can quantify the uncertainty in our gradient approximation as follows. For example, for

the gradient component, ∂u
∂x

, we can estimate the uncertainty δ
(
∂u
∂x

)
using (4.4) as,
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.

(4.8)

where δ(·) denotes the uncertainty in the measured quantity. SciPy’s griddata routine uses

a barycentric interpolation scheme for linear interpolation, thus we can rewrite uinterp as,

uinterp = c1uA + c2uB + c3uC , (4.9)
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subject to the constraint that c1 + c2 + c3 = 1. So, since the anemometers all have the same

error, δ (uA) = δ (uB) = δ (uC), we have

δ (uinterp) = δ (uA) (4.10)

and

δ
(
∂u
∂x

)
= 1

dx

(
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∣∣ δ (dx)
)

= 1
dx

(
2δ (uA) +

∣∣∂u
∂x

∣∣ δ (dx)
) (4.11)

Similar results hold for the other components of the velocity gradient (4.5).

We can also determine the uncertainty in the attraction rate s1, based on (4.7), as
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and
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. (4.14)
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3 Results

UAS flights were conducted between 10 and 15 m AGL at the Leach Airfield in the San Luis

Valley, Colorado as part of the ISARRA 2018 flight campaign (Table 4.1). The UASs were

used to collect simultaneous measurements of wind speed, wind direction, and temperature

in a fixed triangle pattern (each sensor was located at one apex of a triangle with 100 to

200 meters on each side, depending on the experiment, figures 4.5 and 4.6. In addition, a

high resolution atmospheric simulations using WRF-LES model was used to determine the

4D (space and time) wind field across the sampling domain. Data from the ground-based

sensors and the two UASs were used to detect LCSs.

Sensor Package Description of operation Date Time Start Time End Height Location Lat Long
UAS A2 Calibration flight w/MURC. 14-Jul-2018 13:30:21 13:41:05 15 MURC Tower 37.781914 -106.041412
UAS A4 Coordinated flight w/ B4 14-Jul-2018 16:43:07 16:54:55 10 East Runway 37.780315 -106.040772
UAS A5 Coordinated flight w/ B5 14-Jul-2018 17:15:58 17:27:19 10 East Runway 37.780312 -106.040763
UAS A16 Coordinated flight w/ B7 16-Jul-2018 14:42:07 14:53:04 15 East Runway 37.780308 -106.040753
UAS A17 Coordinated flight w/ B8 16-Jul-2018 15:18:01 15:28:17 15 East Runway 37.780336 -106.040746
UAS A22 Coordinated flight w/ B9 17-Jul-2018 12:36:00 12:47:24 15 East Runway 37.780287 -106.04076
UAS A23 Coordinated flight w/ B10 17-Jul-2018 13:59:29 14:10:59 15 East Runway 37.780307 -106.040763
UAS A25 Coordinated flight w/ B11 17-Jul-2018 15:07:39 15:19:02 15 East Runway 37.780398 -106.040762
UAS A26 Coordinated flight w/ B12 17-Jul-2018 15:41:53 15:53:11 15 East Runway 37.780338 -106.040762
UAS B1 Calibration flight w/ Flux Tower. 13-Jul-2018 15:15:07 15:25:27 10 Above UK WS -25.95749269 28.05921094
UAS B2 Calibration flight w/ MURC. 14-Jul-2018 14:15:23 14:26:07 15 MURC Tower 37.78188077 -106.0414296
UAS B4 Coordinated flight w/ A4 14-Jul-2018 16:42:10 16:52:40 10 West Runway 37.78155488 -106.0422978
UAS B5 Coordinated flight w/ A5 14-Jul-2018 17:15:27 17:26:28 10 West Runway 37.7815583 -106.0422984
UAS B7 Coordinated flight w/ A16 16-Jul-2018 14:43:05 14:52:42 18 West Runway 37.78156695 -106.0422614
UAS B8 Coordinated flight w/ A17 16-Jul-2018 15:16:17 15:27:48 9 West Runway 37.78158549 -106.0422597
UAS B9 Coordinated flight w/ A22 17-Jul-2018 12:35:22 12:46:56 15 West Runway 37.78153018 -106.0422848
UAS B10 Coordinated flight w/ A23 17-Jul-2018 13:58:58 14:10:31 15 West Runway 37.78155617 -106.0422905
UAS B11 Coordinated flight w/ A25 17-Jul-2018 15:07:12 15:18:49 15 West Runway 37.78156052 -106.0422956
UAS B12 Coordinated flight w/ A26 17-Jul-2018 15:41:12 15:52:55 15 West Runway 37.78156436 -106.0422941
Ground1 13-Jul-2018 11:45:00 15:55:00 4 On Flux Tower 37.781644 -106.03917
Ground2 14-Jul-2018 8:00:00 18:30:00 4 On Flux Tower 37.781644 -106.03917
Ground3 15-Jul-2018 11:00:00 14:45:00 4 On Flux Tower 37.781644 -106.03917
Ground4 16-Jul-2018 8:40:00 15:35:00 15 On MURC Tower 37.782097 -106.041412
Ground5 17-Jul-2018 8:15:00 16:00:00 15 On MURC Tower 37.782005 -106.041504

Table 4.1: UAS mission and ground station details. UAS sensor packages were functionally
identical. Time start and time end are in local time, Mountain Daylight Time. Height is in
meters above ground level.



132
Chapter 4. Coordinated Unmanned Aircraft System and Ground-based
Weather Measurements to Predict Lagrangian Coherent Structures

Figure 4.6: Satellite image of the sampling region with sensor locations marked with blue
pins. A potential interpolated point is marked in yellow.

3.1 Comparison of Measurements

Calibration flights

Calibration flights were conducted to compare wind velocity and temperature measurements

from UAS A and B to measurements from independent sensors installed at 2, 4 and 10
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m AGL as shown in figure 4.3. The wind velocity and temperature independent sensors

consisted of a CSAT3 sonic anemometer installed at 2 m, an Atmos22 sonic anemometer

placed at 4 m or 15 m (on the MURC’s tower), and the Gill 3D sonic anemometer mounted

atop of the MURC’s tower at 15 m. For comparison, measurements of temperature and

wind velocity recorded at 15 m AGL were considered. Results from this analysis were used

as a confidence benchmark for UAS-based measurements of wind velocity and temperature

sensors.

15:15 15:16 15:17 15:18 15:19 15:20 15:21 15:22 15:23 15:24 15:25 15:26
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10m_UAS_Atmos22

Figure 4.7: Comparison of wind speed measurements on the flux tower for a height of 2 m
(CSAT3 sonic anemometer, yellow), 4 m (Atmos22 sonic anemometer), and 10 m (UAS with
Atmos 22 sonic anemometer.
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Figure 4.8: RMSE comparison for wind speed and direction measurements collected from
UAS B and MURC Tower at 15 meters above ground level.

Wind speed

In this section, we present results from measurements of wind speed and direction collected

on July 13 th, 2018. The wind conditions on this day were variable ranging between 2 and 10

m s−1 as shown in figure 4.7. Atmospheric sampling involved four coordinated UAS missions,

comprising eight distinct flights, along with measurements from the 15m tower Atmos22,

15m tower MURC 3Dsonic, and the 2m tower CSAT3. Figure 4.7 shows the general trend

in wind velocity as recorded by independent sensors at 2, 4 and 10 meters above ground level

during a 10-minute interval. The wind speed trend with height is consistent with a power
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law with coefficient α ≈ 0.2. In figure 4.8, measurements of wind speed and direction from

UAS B and MURC were compared at 15 m AGL. Agreement for wind speed and direction

were determined using a RMSE metric. Results show an RMS error of 0.75 ms−1 and 8.9 ◦

for wind speed and direction, respectively.

In figures 4.9 and 4.10 wind speed measurements from multiple sensors are displayed. Figure

4.9 shows the measurements from the ground based 15m tower MURC 3Dsonic (blue) and

15m tower Atmos22 (orange), overlaid with measurements from the 15m UAS A Atmos22

(black). Figure 4.10 also shows the measurements from the ground based 15m tower MURC 3Dsonic

(blue) and 15m tower Atmos22 (orange), but overlaid with the 15m UAS B Atmos22 mea-

surements (black). The UAS A flights shown are 22, 23, 25, 26. The UAS B flights shown

are 9, 10, 11, 12. Details regarding the flights can be found in Table 4.1. Pearson correlation

coefficients for these wind speed measurements range from 0.868 to 0.970 and can be found

in Table 4.2.

In figure 4.11, we show the wind speed measurements associated with our attraction rate

calculations (orange) along with wind speed predictions from WRF-LES model (blue), over-

laid with mission averages for the sensor measurements (black). Mission averages are in-

cluded for the period over which all three sensors were operating. For this comparison,

a temporal resolution of 0.66 s was used for the WRF-LES model output. To calculate

the wind speed, measurements were taken from two concurrent UAS flights as well as the

15m tower MURC 3Dsonic and interpolated to the point where the attraction rate was com-

puted, figures 4.5 and 4.6. The wind speed from the WRF-LES model came from the grid

point nearest to where the attraction rate was calculated.
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Figure 4.9: Comparison of wind speed measurements from UAS A and ground based sensors.

15m Tower MURC 3Dsonic 15m Tower Atmos22 15m UAS A Atmos22 15m UAS B Atmos22
15m Tower MURC 3Dsonic – 0.970 0.876 0.914

15m Tower Atmos22 – 0.868 0.895
15m UAS A Atmos22 – 0.868
15m UAS B Atmos22 –

Table 4.2: Pearson correlation coefficients for wind speed measurements between different
UAS packages and ground based sensors.

3.2 Attraction rate measurements

In this section we present our results for attraction rate as calculated from our wind velocity

measurements using the UAS and ground station method described in section 2.6. As a

comparison we show the attraction rate as calculated from the WRF-LES model predictions.

In order to get a picture of what was happening on a larger scale, we also calculated the

attraction rate over the San Luis Valley using the 10 m velocity field from the WRF-LES

model.

In figure 4.13, we show the attraction rate as calculated from the measurements provided by

the two UASs and the 15m tower MURC 3Dsonic (orange) along with the attraction rate

calculated from WRF-LES model predictions (blue), overlaid with mission averages for the

sensor measurements (black). The uncertainty ranges for the attraction rate measurements
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Figure 4.10: Comparison of wind speed measurements from UAS B and ground based sensors.

are shown in gray. Mission averages are averages for the period over which all 3 sensors were

operating. For this comparison the WRF-LES model data was at a temporal resolution of

0.66s. The attraction rate from the WRF-LES model’s wind predictions was calculated using

a central finite-difference scheme from a five point stencil centered on the grid point nearest to

where the attraction rate was calculated from the UASs and the 15m tower MURC 3Dsonic

measurements. In yellow we highlight the time periods around the predicted attraction rate

fields shown in figures 4.14 and 4.15. We display the gradients that were used to calculate

attraction rate in figure 4.12. The gradients from the WRF-LES model (blue) are overlaid

with those from our sensors (orange). We also show the range of uncertainty for our sensor

gradient calculations in gray.

In figures 4.14 and 4.15, we show the attraction rate field over the San Luis valley on July

17th 2018 as calculated from the WRF-LES model’s 10 m velocity field prediction. In figure

4.14, we show the attraction rate field at 1400 MDT. This time was chosen to display due

to a large discrepancy between the WRF-LES model’s attraction rate prediction and the

attraction rate as calculated from real-world data. In figure 4.15, we show the attraction
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Figure 4.11: Wind speed from WRF-LES grid point nearest to where the attraction rate
was calculated (blue) and wind speed as measured by sensors, interpolated to the attraction
rate position (orange) overlaid with flight average of the wind speed (black). Wind speed
from the WRF-LES comes from the 10m height level, while wind speed measurements were
performed by sensors at 15m.

rate field at 1550 MDT. This time was chosen because an attracting front was passing

through our sampling region out of the east. After the front passes the field is noticeable

smoother. In both figures, the point where the attraction rate was calculated for the time

series in figure 4.13 is shown as a red dot. An animation of the attracting rate field over the

San Luis valley can be found at attraction rate link.

4 Discussion

Concentrations of airborne chemical and biological agents from a hazardous release are not

spread uniformly. Instead, there are regions of higher concentration, in part due to local

atmospheric flow conditions which can attract agents [24, 27, 38, 39, 40]. New tools and

technology are needed to monitor and forecast atmospheric transport phenomena [20]. Here,

we have described a series of unique field experiments to collect simultaneous measurements

https://youtu.be/jui5GfehWGg
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Figure 4.12: The velocity gradient from WRF-LES predictions (blue) and the velocity gra-
dient as calculated from sensor measurements (orange). The velocity gradient from the
WRF-LES comes from the 10 m height level wind speed, while wind speed measurements
used to calculate the velocity gradient were performed by sensors at 15 m. The uncertainty
ranges for the velocity gradient as calculated from sensor measurements are shown in gray.

of wind speed, wind direction, and temperature using multiple UASs and ground stations.

Data from these sensors were compared to a WRF-LES model, and were used to forecast

LCS.

Overall, the WRF-LES model provided fairly accurate predictions of both the winds and

the attraction rate with some caveats. The wind speed predictions from the WRF-LES

model followed the general trend measured by the sensors with both modeled and observed

winds ranging between 0 and 4 m s-1 during the early afternoon increasing late in the

day in response to the development of moist convection and gusty outflows. Modeling the

exact timing of deep moist convection and associate gusty winds at a single grid point is

not possible, but rather, can be determined in a statistical sense by compositing forecast

information across a much larger area of similar surface type. As seen in the attraction

rate field (Figures 4.14 and 4.15), visual inspection of the modeled 10 m winds reveals very
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Figure 4.13: The attraction rate from WRF-LES predictions (blue) and the attraction rate as
calculated from sensor measurements (orange) overlaid with flight average of the attraction
rate (black). The uncertainty ranges for the attraction rate measurements are shown in gray.
The attraction rate from the WRF-LES comes from the 10 m height level wind speed, while
wind speed measurements used to calculate the attraction rate were performed by sensors
at 15 m. Times of interest are highlighted with a yellow vertical line, corresponding to the
predicted attraction rate fields shown in figures 4.14 and 4.15, respectively.

localized convective circulations that resulted in gusty higher winds at the grid point closest

to the measurement site. However, within 5 km the 10 m winds were still below 4 m s-1 as

observed through 1545 MDT (Figures 4.9 and 4.10). Quantifying this spatial and temporal

variability can be captured through ensemble approaches which can be derived using spatial

statistics and/or by running a multi-member ensemble; however, such analyses are beyond

the scope of this manuscript.

Analyzing the time series data, we see that the attraction rate has quick repeated dips in

it, indicating short bursts of attracting activity. Comparing this to the the attraction rate

fields shown in figure 4.14, we can see that the convective cells are bordered by narrow

troughs of the attraction rate field. These dips appear to be an indicator of the movement of

convective cells across a location, and thus a transition of the observer from one convective
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Figure 4.14: The attraction rate field at 1400 MDT, convective cells can be seen, bordered
by troughs of the attracting field, throughout the domain. A front appears to be blowing an
attracting feature out of the east of the domain. Sampling region is marked with a red dot.

cell to another.

As mentioned before, there was good agreement between the attraction rate as calculated

from the WRF-LES model’s predictions and the attraction rate as calculated from sensor

measurements. There is an exception to this agreement during the second UAS mission on

July 17, 2018 around 1400 MDT. During this mission, the sensors measured the attraction

rate drop below -200hr−1, yet the model prediction for this time was closer to -50 hr−1.

Looking at the attraction rate field for this time period, figure 4.14, we can see there was

a lot of convective activity going on in this region of the domain. Furthermore, looking at

the time series data, figure 4.13, we can see that the WRF-LES model does predict a dip in

the attraction rate around that time. These dips appear to be an indication of transition
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Figure 4.15: The attraction rate field at 1550 MDT, an attracting LCS can be seen along
the center of the domain having ridden the front out of the east. The sampling region is
marked with a red dot. Part of the attracting feature is shown as a white line. The direction
the feature is moving is shown by black arrows.

between convective cells. Thus, the UAS and ground station measurements are likely picking

up highly localized attraction at that time as a convective cell passes by, attraction which is

falling below the scale of the model.

Another noteworthy event happened during the fourth UAS flight on 2018 July 17. During

this flight, a front passes through the sampling area, coming out of the east. In figure 4.15,

we show the predicted front (white curve) just before passing by our sampling area, marked

as a red dot. In the time series data, figure 4.13, we can see two small dips right before 1600

in the attraction rate as predicted by the WRF-LES model. During this same period, we

have a sharp drop in the attraction rate as calculated by our UAS measurements, followed

by a quick uptick and then another drop as the flight data ends. These dips happen at
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approximately the same time the front was predicted to pass through the sampling area.

It is thus very likely that the drops calculated correspond to the predicted front passing

through our measurement sampling area.

The troughs of the attraction rate field that we are detecting are very likely to be important

indicators of LCSs. The attraction rate field is the limit of the backward-time FTLE field

as integration time goes to zero [31]. As mentioned in the introduction, ridges of the FTLE

field tend to coincide with LCSs [21, 22, 23, 24, 25, 26, 27, 28]. Whereas the FTLE is

defined as a positively valued scalar field, indicating stretching, the attracting rate field is

largely negative, indicating shrinking. Troughs of the attraction rate field are the analogues

to ridges of the backward-time FTLE field. These troughs can be thought of as attracting

LCSs. Therefore strong dips in the attraction rate time series should correspond to the

passage of attracting LCSs.

5 Conclusions

We equipped a ground station and two UASs with identical ultrasonic anemometers. Flights

reported here were conducted 10 to 15 meters AGL at the Leach Airfield in the San Luis

Valley, Colorado as part of the ISARRA 2018 flight campaign. The ultrasonic anemometers

were used to collect simultaneous measurements of wind speed and wind direction in a

fixed triangle pattern. Results showed excellent agreement among sensors across different

platforms, particularly for wind speed. Over the same time period as the samping campaign,

a WRF-LES model was used to determine the wind field across the sampling domain.

Data from the ground-based sensors and the two UASs were used to detect attracting regions

(also known as Lagrangian coherent structures or LCSs), which have the potential to attract

and transport high concentrations of chemical and biological agents. This is the first time
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that direct measurement of an LCS indicator was made in the atmosphere using a team of

sensors.

Coordinated teams of aerial and ground-based sensors provide unique environmental data

that have the potential to inform real-time decisions regarding rapid emergency responses,

such as following the transport of hazardous agents after a hurricane. The integration of real-

time data from unmanned assets, advanced mathematical techniques for transport analysis,

and predictive models can help assist in emergency response decisions in the future.
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UAS unmanned aircraft systems

AGL Above ground level
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LCS Lagrangian coherent structure
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WRF Weather research and forecasting

LES Large eddy simulation
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Chapter 5

Conclusion

1 Summary

The purpose of this dissertation is fill in some of the gaps in the theoretical, numerical, and

experimental understanding of Eulerian diagnostics and their relationship to Lagrangian

diagnostics, particularly with respect to the transport of material in geophysical flows. This

is done by:

• proving rigorous mathematical connections between Lagrangian and Eulerian diagnos-

tics for n-dimensional systems,

• formulating a new Eulerian diagnostic, the infinitesimal-time LCS (iLCS),

• exploring the ability of Eulerian diagnostics to detect Lagrangian dynamics,

• developing a new method to measure local Eulerian diagnostics using a single fixed-

wing unmanned aircraft system (UAS),
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• and applying Eulerian diagnostics to combined UAS and ground-based measurements

to look for indications of LCSs.

In chapter 2 the deep mathematical relationships between Lagrangian and Eulerian diag-

nostics is rigorously proven. Higher order Eulerian approximations to the FTLE are derived

using Taylor series expansions and Rivlin-Ericksen tensors. A new Eulerian diagnostic, iLCS,

is derived by examining at the limit of LCS and the invariants Cauchy-Green tensor as in-

tegration time goes to zero. These methods are then tested on a number of example flows,

including the double gyre, a realistic geophysical flow, and 3D analytic flows. These test cases

demonstrated the mathematical relationship between between Eulerian and Lagrangian di-

agnostics by showing that the difference between the FTLE and Eulerian approximations

goes to zero as integration time is decreased. These examples also illustrate the effectiveness

of iLCS for predicting fluid parcel trajectories, in both analytic models and realistic flows.

Notably, for the realistic flow iLCS were predictive for up to several hours.

In Chapter 3 the groundwork for being able to detect LCSs from a single fixed wing UAS

is laid. A new algorithm is developed which approximates the gradient of a scalar field

from measurements taken along a circular arc. After this, an OSSE was conducted which

determined that it is, in principle, possible to use velocity measurements from a circling

UAS to approximate the local Eulerian diagnostics at the center-point of the UAS orbit. A

parametric study was then performed which determined that it is in fact possible to utilize

Eulerian diagnostics infer Lagrangian dynamics. However, care needs to be taken with one’s

choice of Eulerian diagnostic, as well as with the choice of parameters values. Finally, these

two concepts were combined into a single numerical experiment which found that it is possible

to infer local Lagrangian dynamics from atmospheric velocity measurements gathered by a

fixed-wing UAS.

In Chapter 4 the attraction rate is used to analyze wind velocity measurements. These mea-
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surements were taken by UASs and ground-based sensors during an atmospheric sampling

campaign in the San Luis Valley, Co. over the summer of 2018. The attraction rate as calcu-

lated from these measurements is then compared to the attraction rate as computed from an

WRF-LES model of the San Luis Valley. This comparison reveled that the sensors appeared

to be picking up signals associated with atmospheric convective cells and an atmospheric

front which passed out of the mountains. Convective cells have been found to be associated

with LCS [1]; likewise as a flow separatrix, LCSs are likely to coincide with atmospheric

fronts. Thus these attraction rate signals likely correspond to LCSs.

The work presented in this dissertation has a wide range of real world applications to fields as

diverse as: tracking the spread of atmospheric contaminants, search and rescue operations,

and optimizing the response to hazard releases. For example, one application could be to fly

fixed wing UASs around hazardous areas, such as forest fires, and used the local attraction

rate to determine where particulates, such as smoke, are more likely to converge. Likewise,

networks of inexpensive UASs could be set up around urban areas and used to measure the

local velocity gradients. From these gradients, iLCSs could then be computed. These iLCSs

could then be used to track where air contaminants are likely to move in order to provide

better quality warnings.

2 Future research direction

As is often the case in science, this dissertation has raised more questions than it has an-

swered. The following are potential research directions that could stem from this dissertation.

From the work on Eulerian diagnostics in chapter 2, several research direction are possible.

With a better understanding of how Eulerian diagnostics relate to Lagrangian diagnostics,

a next step should be to apply Eulerian diagnostics to reduced order modeling in place
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of Lagrangian diagnostics, as was done in [2]. This would likely speed up the generation

of the new ROM, while still improving the accuracy of the ROM’s subsequent Lagrangian

characteristics. Another potential direction is to look for iLCS embedded within higher

dimensional iLCS (e.g. a 1D iLCS embedded within a 2D iLCS). This would help to further

the understanding of how fluid parcels evolve in the neighborhood of the LCS and could

uncover new slow-fast systems. Additionally, the use of higher order FTLE approximations

to detect Lagrangian transport structures in geophysical fluid flows would be a worthwhile

direction. The geophysical flow example in chapter 2 demonstrated that iLCS can show how

fluid parcels will evolve over several hours, higher order approximations may be valid for

even long periods of time. This would be very useful in a hazardous release situation, where

the accurate prediction of contaminant transport over longer periods of time would help to

optimize the respond. Finally, finding a way to determine the interval over which Eulerian

diagnostics are effective is a critical direction for this research. Users applying these methods

in the field need to have a sense of the period of time for which these diagnostics are useful,

in order to exploit them to their full extent.

The methodology laid out in chapter 3 has opened up several potential venues of exploration.

First and foremost, the role of sensor uncertainty in the detection of LCS needs to be

explored. As of now, this methodology has been tested using a “perfect” anemometer,

however, in reality no instrument is perfect. Researchers looking for indications of LCS

in the field need to know whether or not their instruments are sufficiently precise for the

reliable detection of LCS. Second, this methodology should be applied to experimental data

sets. As it stands this methodology has only been tested on numerical simulations, using

this method to experimentally detect LCSs will give users added confidence in its strength.

Another potential direction is to look for indications of iLCSs using UAS measurements. This

should be fairly straight forward as UASs measure Eulerian data. Finally, this methodology
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should be applied to search for LCSs associated with specific atmospheric species, such as

those associated with water vapor [3]. While traditionally LCSs give an indication of how

particles in a fluid flow will be transported, species specific LCSs will likely be more useful

for situations such as hazardous response and air quality monitoring.

The Eulerian analysis of experimental data in chapter 4 opens the door more forms of

dynamical systems analysis. In this chapter the attraction rate was used to analyze velocity

field measurements. However, this dissertation has developed new higher order methods to

analyze fluid flows. Thus, a next step should be to analyze experimental UAS and ground

sensor data with higher order terms. Likewise, other tools, such as the trajectory divergence

rate [4], could be applied to analyze these types of measurements. Future work could also

seek to find indications of iLCS. This study already found likely indications of LCS. Since

iLCS are the limit of LCS as integration time goes to zero, their indications were likely

picked up as well. Additionally, with a few additionally sensors the equations for iLCS could

be directly evaluated. This would allow the direct experimental detection of iLCS, rather

than just an inferred passing. Due to time constraints only a single run LES was used

for the comparison with experimental measurements. While a single run LES simulation

is sufficient, an ensemble simulation would better account the uncertainties associated with

initial conditions and model parameterizations. Thus, future work should try to use ensemble

forecasts to ensure more statistically robust comparisons. Finally, the experimental results

should be compared to results from larger scale models such as NAM. This would filter out

the noisy turbulence of the CBL and allow for the comparison of larger scale features passing

through the area.
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