A map approximation for the restricted three-body problem

Shane Ross

Engineering Science and Mechanics, Virginia Tech www.esm.vt.edu/~sdross

Collaborators: P. Grover (Virginia Tech) \& D. J. Scheeres (U Michigan)

SIAM Conference on Applications of Dynamical Systems

Infinity to capture about small companion in binary pair?

\square After consecutive gravity assists, large orbit changes

Kicks at periapsis

\square Key idea: model particle motion as "kicks" at periapsis

Semimajor Axis vs. Time

In rotating frame where m_{1}, m_{2} are fixed

Kicks at periapsis

\square Sensitive dependence on argument of periapse ω

In rotating frame where m_{1}, m_{2} are fixed

Kicks at periapsis

\square Construct update map $\left(\omega_{1}, a_{1}, e_{1}\right) \mapsto\left(\omega_{2}, a_{2}, e_{2}\right)$ using average perturbation per orbit by smaller mass

Kicks at periapsis

\square Construct update map $\left(\omega_{1}, a_{1}, e_{1}\right) \mapsto\left(\omega_{2}, a_{2}, e_{2}\right)$ using average perturbation per orbit by smaller mass

Kicks at periapsis

\square Cumulative effect of consecutive gravity assists can be dramatic.

Not hyperbolic swing-by

\square Occur outside sphere of influence (Hill radius)

- not the close, hyperbolic swing-bys of Voyager

Capture by secondary

\square Dynamically connected to capture thru tubes

Starting model: restricted 3-body problem

\square Particle assumed on near-Keplerian orbit around m_{1}
$\square \mathrm{In}$ the frame co-rotating with m_{2} and m_{1},

$$
H_{\mathrm{rot}}(l, \omega, L, G)=K(L)+\mu R(l, \omega, L, G)-G
$$

in Delaunay variables
\square Evolution is Hamitlon's equations:

$$
\frac{d}{d t}(l, \omega, L, G)=f(l, \omega, L, G)
$$

\square Jacobi constant, $C_{J}=-2 H_{\text {rot }}$ conserved along trajectories

Change in orbital elements over one particle orbit

Picard's method of approximation
\square Let $y(t)=x_{0}=$ unperturbed orbital elements
\square Approximate change in orbital elements over one particle orbit is

$$
\Delta y=\int_{t_{0}}^{t_{0}+T} f\left(x_{0}, \tau\right) d \tau
$$

where $T=$ period of unperturbed orbit

Change in orbital elements over one particle orbit

\square Assume greatest perturbation occurs at periapsis

- Limits of integration, apoapsis to apoapsis

Change in orbital elements over one particle orbit

\square Evolution of G (angular momentum)

$$
\frac{d G}{d t}=-\mu \frac{\partial R}{\partial \omega},
$$

\square Picard's approximation:

$$
\begin{aligned}
\Delta G & =-\mu \int_{-T / 2}^{T / 2} \frac{\partial R}{\partial \omega} d t \\
& =-\frac{\mu}{G}\left[\left(\int_{-\pi}^{\pi}\left(\frac{r}{r_{2}}\right)^{3} \sin (\omega+\nu-t(\nu)) d \nu\right)-\sin \omega\left(2 \int_{0}^{\pi} \cos (\nu-t(\nu)) d \nu\right)\right]
\end{aligned}
$$

$\square \Delta K=$ Keplerian energy change over an orbit

$$
\Delta K=\Delta G-\mu \Delta R
$$

Energy kick function

\square Changes have form

$$
\Delta K=\mu f(\omega)
$$

f is the energy kick function with parameters K, C_{J}

Maximum changes on either side of perturber

The periapsis kick map (Keplerian Map)

\square Cumulative effect of consecutive passes by perturber
\square Can construct an update map
$\left(\omega_{n+1}, K_{n+1}\right)=F\left(\omega_{n}, K_{n}\right)$ on the cylinder $\Sigma=S^{1} \times \mathbb{R}$, i.e., $F: \Sigma \rightarrow \Sigma$ where

$$
\binom{\omega_{n+1}}{K_{n+1}}=\binom{\omega_{n}-2 \pi\left(-2\left(K_{n}+\mu f\left(\omega_{n}\right)\right)\right)^{-3 / 2}}{K_{n}+\mu f\left(\omega_{n}\right)}
$$

\square Area-preserving (symplectic twist) map
\square Example: particle in Jupiter-Callisto system $\mu=5 \times 10^{-5}$

Verification of Keplerian map: phase portrait

Keplerian map

Verification of Keplerian map: phase portrait

Keplerian map

numerical integration of ODEs

- Keplerian map $=$ fast orbit propagator
- preserves phase space features
- but breaks left-right symmetry present in original system - can be removed using another method (Hamilton-Jacobi)

Dynamics of Keplerian map

Resonance zone ${ }^{1}$
\square Structured motion around resonance zones
${ }^{1}$ in the terminology of MacKay, Meiss, and Percival [1987]

Dynamics of Keplerian map

Resonance zone ${ }^{2}$

\square Structured motion around resonance zones

[^0]
Large orbit changes via multiple resonance zones

\square multiple flybys for orbit reduction or expansion

Large orbit changes, $\Gamma_{n}=F^{n}\left(\Gamma_{0}\right)$

Large orbit changes, $\Gamma_{n}=F^{n}\left(\Gamma_{0}\right)$

Large orbit changes, $\Gamma_{n}=F^{n}\left(\Gamma_{0}\right)$

Large orbit changes, $\Gamma_{n}=F^{n}\left(\Gamma_{0}\right)$

Large orbit changes, $\Gamma_{n}=F^{n}\left(\Gamma_{0}\right)$

Large orbit changes, $\Gamma_{n}=F^{n}\left(\Gamma_{0}\right)$

Reachable orbits and diffusion

\square Diffusion in semimajor axis
$\square \ldots$ increases as C_{J} decreases (larger kicks)

Reachable orbits: upper boundary for small μ

A rotational invariant circle (RIC)

RIC found in Keplerian map for $\mu=5 \times 10^{-6}$

Identify Keplerian map as Poincaré return map

\square Poincaré map at periapsis in orbital element space
$\square F: \Sigma \rightarrow \Sigma$ where $\Sigma=\left\{l=0 \mid C_{J}=\right.$ constant $\}$

Relationship to capture around perturber

exit from jovicentric to moon region
\square Exit: where tube of capture orbits intersects Σ

Relationship to capture around perturber

exit from jovicentric to moon region
\square Exit: where tube of capture orbits intersects Σ
\square Orbits reaching exit are ballistically captured, passing by L_{2}

Relationship to capture from infinity

Summary and conclusions

\square Consecutive gravity assists
\square Reduced to simple lower-dimensional map

- nice analytical form
- many phase space features preserved
\square Dynamically connected to
- capture to and escape from perturber
- capture to and escape from infinity
\square Applicable to some astronomical phenomena
\square Preliminary optimal trajectory design

Final word

\square Extensions:

- out of plane motion (4D map)
- control in the presence of uncertainty
- eccentric orbits for the perturbers
- multiple perturbers transfer from one body to another
- Consider other problems with localized perturbations?
- chemistry, vortex dynamics, ...

Reference:
Ross \& Scheeres, SIAM J. Applied Dynamical Systems, 2007. more at: www.shaneross.com

[^0]: ${ }^{2}$ in the terminology of MacKay, Meiss, and Percival [1987]

