

A map approximation for the restricted three-body problem

Shane Ross

Engineering Science and Mechanics, Virginia Tech www.esm.vt.edu/~sdross

Collaborators: P. Grover (Virginia Tech) & D. J. Scheeres (U Michigan)

SIAM Conference on Applications of Dynamical Systems

Infinity to capture about small companion in binary pair?

After **consecutive gravity assists**, large orbit changes

Kicks at periapsis

□ Key idea: model particle motion as "**kicks**" at periapsis

In rotating frame where m_1, m_2 are fixed

Kicks at periapsis

\Box Sensitive dependence on argument of periapse ω

In rotating frame where m_1, m_2 are fixed

Construct **update map** $(\omega_1, a_1, e_1) \mapsto (\omega_2, a_2, e_2)$ using average perturbation per orbit by smaller mass

Construct **update map** $(\omega_1, a_1, e_1) \mapsto (\omega_2, a_2, e_2)$ using average perturbation per orbit by smaller mass

Kicks at periapsis

Cumulative effect of **consecutive gravity assists** can be dramatic.

Occur outside sphere of influence (Hill radius)
 not the close, hyperbolic swing-bys of Voyager

Capture by secondary

Dynamically connected to capture thru tubes

Starting model: restricted 3-body problem

Particle assumed on near-Keplerian orbit around m_1 In the frame co-rotating with m_2 and m_1 ,

$$H_{\rm rot}(l,\omega,L,G) = K(L) + \mu R(l,\omega,L,G) - G,$$

- in Delaunay variables
- Evolution is Hamitlon's equations:

$$\frac{d}{dt}(l,\omega,L,G) = f(l,\omega,L,G)$$

 \Box Jacobi constant, $C_J = -2H_{\rm rot}$

conserved along trajectories

Change in orbital elements over one particle orbit

Picard's method of approximationLet $y(t) = x_0$ = unperturbed orbital elements

Approximate change in orbital elements over one particle orbit is

$$\Delta y = \int_{t_0}^{t_0+T} f(x_0,\tau) \ d\tau,$$

where T = period of unperturbed orbit

Change in orbital elements over one particle orbit

Assume greatest perturbation occurs at periapsis

• Limits of integration, apoapsis to apoapsis

Change in orbital elements over one particle orbit

Evolution of G (angular momentum) $\frac{dG}{dt} = -\mu \frac{\partial R}{\partial \omega},$ Picard's approximation: $\Delta G = -\mu \int_{-T/2}^{T/2} \frac{\partial R}{\partial \omega} dt$ $= -\frac{\mu}{G} \left[\left(\int_{-\pi}^{\pi} \left(\frac{r}{r_2} \right)^3 \sin(\omega + \nu - t(\nu)) d\nu \right) - \sin \omega \left(2 \int_{0}^{\pi} \cos(\nu - t(\nu)) d\nu \right) \right]$

 $\Box \Delta K =$ Keplerian energy change over an orbit $\Delta K = \Delta G - \mu \Delta R$

□ Changes have form

$$\Delta K = \mu f(\omega),$$

f is the **energy kick function** with parameters K, C_J

Maximum changes on either side of perturber

The periapsis kick map (Keplerian Map)

- Cumulative effect of **consecutive passes** by perturber
- Can construct an **update map**
 - $(\omega_{n+1}, K_{n+1}) = F(\omega_n, K_n)$ on the cylinder $\Sigma = S^1 \times \mathbb{R}$, i.e., $F : \Sigma \to \Sigma$ where

$$\begin{pmatrix} \omega_{n+1} \\ K_{n+1} \end{pmatrix} = \begin{pmatrix} \omega_n - 2\pi(-2(K_n + \mu f(\omega_n)))^{-3/2} \\ K_n + \mu f(\omega_n) \end{pmatrix}$$

□ Area-preserving (symplectic twist) map

 \Box Example: particle in Jupiter-Callisto system $\mu = 5 \times 10^{-5}$

Verification of Keplerian map: phase portrait

Verification of Keplerian map: phase portrait

 \circ Keplerian map = fast orbit propagator

preserves phase space features

- but breaks left-right symmetry present in original system
- can be removed using another method (Hamilton-Jacobi)

Dynamics of Keplerian map

Resonance zone¹

Structured motion around resonance zones

¹in the terminology of MacKay, Meiss, and Percival [1987]

Dynamics of Keplerian map

Resonance zone²

Structured motion around resonance zones

²in the terminology of MacKay, Meiss, and Percival [1987]

Large orbit changes via multiple resonance zones

multiple flybys for orbit reduction or expansion

Reachable orbits and diffusion

□ Diffusion in semimajor axis □ ... increases as C_J decreases (larger kicks)

Reachable orbits: upper boundary for small μ

A rotational invariant circle (RIC)

RIC found in Keplerian map for $\mu = 5 \times 10^{-6}$

Identify Keplerian map as Poincaré return map

□ Poincaré map at periapsis in orbital element space □ $F : \Sigma \to \Sigma$ where $\Sigma = \{l = 0 \mid C_J = \text{constant}\}$

Relationship to capture around perturber

exit from jovicentric to moon region

 \Box **Exit**: where tube of capture orbits intersects Σ

Relationship to capture around perturber

exit from jovicentric to moon region

□ Exit: where tube of capture orbits intersects ∑
 □ Orbits reaching exit are ballistically captured, passing by L₂

Relationship to capture from infinity

Summary and conclusions

Consecutive gravity assists

□ Reduced to simple lower-dimensional map

- nice analytical form
- many phase space features preserved

Dynamically connected to

- capture to and escape from perturber
- o capture to and escape from infinity

Applicable to some astronomical phenomena

Preliminary optimal trajectory design

Final word

Extensions:

- out of plane motion (4D map)
- o control in the presence of uncertainty
- o eccentric orbits for the perturbers
- multiple perturbers
 transfer from one body to another

- Consider other problems with localized perturbations?
 - chemistry, vortex dynamics, ...

Reference:

Ross & Scheeres, *SIAM J. Applied Dynamical Systems*, 2007. more at: www.shaneross.com