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Infinity to capture about small companion in binary pair?

� After consecutive gravity assists, large orbit changes
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Kicks at periapsis

� Key idea: model particle motion as “kicks” at periapsis
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Kicks at periapsis

� Sensitive dependence on argument of periapse ω
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Kicks at periapsis

� Construct update map (ω1, a1, e1) 7→ (ω2, a2, e2)
using average perturbation per orbit by smaller mass

(ω1,a1,e1)
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Kicks at periapsis

� Construct update map (ω1, a1, e1) 7→ (ω2, a2, e2)
using average perturbation per orbit by smaller mass

(ω1,a1,e1)

(ω2,a2,e2)
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Kicks at periapsis

� Cumulative effect of consecutive gravity assists can
be dramatic.
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Not hyperbolic swing-by

� Occur outside sphere of influence (Hill radius)
– not the close, hyperbolic swing-bys of Voyager
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Capture by secondary

� Dynamically connected to capture thru tubes
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Starting model: restricted 3-body problem

� Particle assumed on near-Keplerian orbit around m1

� In the frame co-rotating with m2 and m1,

Hrot(l, ω, L,G) = K(L) + µR(l, ω, L,G)−G,

in Delaunay variables

� Evolution is Hamitlon’s equations:

d

dt
(l, ω, L,G) = f (l, ω, L,G)

� Jacobi constant, CJ = −2Hrot

conserved along trajectories
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Change in orbital elements over one particle orbit

�Picard’s method of approximation

� Let y(t) = x0 = unperturbed orbital elements

� Approximate change in orbital elements over one
particle orbit is

∆y =

∫ t0+T

t0

f (x0, τ ) dτ ,

where T = period of unperturbed orbit

11



Change in orbital elements over one particle orbit

� Assume greatest perturbation occurs at periapsis

◦ Limits of integration, apoapsis to apoapsis
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Change in orbital elements over one particle orbit

� Evolution of G (angular momentum)

dG

dt
= −µ

∂R

∂ω
,

� Picard’s approximation:

∆G = −µ

∫ T/2

−T/2

∂R

∂ω
dt

= −µ

G

[(∫ π

−π

(
r

r2

)3

sin(ω + ν − t(ν)) dν

)
− sin ω

(
2

∫ π

0

cos(ν − t(ν)) dν

)]

� ∆K = Keplerian energy change over an orbit

∆K = ∆G− µ∆R
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Energy kick function

� Changes have form

∆K = µf (ω),

f is the energy kick function with parameters K, CJ
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Maximum changes on either side of perturber
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The periapsis kick map (Keplerian Map)

� Cumulative effect of consecutive passes by perturber

� Can construct an update map
(ωn+1, Kn+1) = F (ωn, Kn) on the cylinder Σ = S1×R,
i.e., F : Σ → Σ where(

ωn+1

Kn+1

)
=

(
ωn − 2π(−2(Kn + µf (ωn)))

−3/2

Kn + µf (ωn)

)
� Area-preserving (symplectic twist) map

� Example: particle in Jupiter-Callisto system

µ = 5× 10−5

16



Verification of Keplerian map: phase portrait

Keplerian map
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Verification of Keplerian map: phase portrait

Keplerian map numerical integration of ODEs

◦ Keplerian map = fast orbit propagator

◦ preserves phase space features
— but breaks left-right symmetry present in original system
— can be removed using another method (Hamilton-Jacobi)
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Dynamics of Keplerian map
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Resonance zone1

� Structured motion around resonance zones

1in the terminology of MacKay, Meiss, and Percival [1987]
19



Dynamics of Keplerian map
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Resonance zone2

� Structured motion around resonance zones

2in the terminology of MacKay, Meiss, and Percival [1987]
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Large orbit changes via multiple resonance zones

� multiple flybys for orbit reduction or expansion

P
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Large orbit changes, Γn = F n(Γ0)
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Large orbit changes, Γn = F n(Γ0)
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Large orbit changes, Γn = F n(Γ0)
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Large orbit changes, Γn = F n(Γ0)
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Large orbit changes, Γn = F n(Γ0)
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Large orbit changes, Γn = F n(Γ0)
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Reachable orbits and diffusion
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� Diffusion in semimajor axis

� ... increases as CJ decreases (larger kicks)
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Reachable orbits: upper boundary for small µ

A rotational invariant circle (RIC) RIC found in Keplerian map for µ = 5× 10−6
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Identify Keplerian map as Poincaré return map

F(ω,a)

Σ

F

(ω,a)

� Poincaré map at periapsis in orbital element space

� F : Σ → Σ where Σ = {l = 0 | CJ = constant}
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Relationship to capture around perturber
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exit from jovicentric to moon region

� Exit: where tube of capture orbits intersects Σ

31



Relationship to capture around perturber

 Jovian Moon 

L2 

exit from jovicentric to moon region

� Exit: where tube of capture orbits intersects Σ

� Orbits reaching exit are ballistically captured,
passing by L2
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Relationship to capture from infinity
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Captured from infinity
after previous periapsis
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Summary and conclusions

� Consecutive gravity assists

� Reduced to simple lower-dimensional map
◦ nice analytical form

◦ many phase space features preserved

� Dynamically connected to
◦ capture to and escape from perturber

◦ capture to and escape from infinity

� Applicable to some astronomical phenomena

� Preliminary optimal trajectory design
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Final word

� Extensions:

◦ out of plane motion (4D map)

◦ control in the presence of uncertainty

◦ eccentric orbits for the perturbers

◦ multiple perturbers
transfer from one body to another

G

E

◦ Consider other problems with localized perturbations?
– chemistry, vortex dynamics, ...

Reference:
Ross & Scheeres, SIAM J. Applied Dynamical Systems, 2007.
more at: www.shaneross.com
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