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Introduction

Invariant manifolds of unstable bound orbits act as
(codimension 1 surfaces)

Determine , e.g., collisions, transitions

Use of phase space where appropriate




Introduction

Value-added: results apply to similar problems in
e.g., chemistry, biomechanics, boat capsize
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3-Body Problem

Circular restricted 3-body problem

Two important landmarks, the unstable points L4, L5




3-Body Problem

Equations of motion in rotating frame describe P
moving in an effective potential plus coriolis force
(goes back to work of Jacobi, Hill, etc)

U(x,y) L,

Effective Potential



Motion in energy surface

Hamiltonian function H(q, p)
of energy IV is codim-1

M(E) ={(q,p) | H(q,p) = E}

In 2 d.o.f., 3D surfaces foliating the 4D phase space (in

3 d.o.f., 5D energy surfaces)



Realms of possible motion

Particle/Spacecraft

"No Fly Zone"

M,,(E) partitioned into three
e.g., Earth realm = phase space around Earth

Energy £ determines their connectivity

Vil



Realms of possible motion

Case 1 : E<E1 Case 2 : E1<E<E2 Case 3 : E2<E<E3
P
ml‘ mz' ml. mz'

Case 4 : E3<E<E4 Case 5 : E>E,
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Realms and

Earth ealm Moon Realm
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Position Space Phase Space (Position + Velocity)
Realms connected by tubes in phase space ~ Sk x R

— Conley & McGehee, 1960s, found these locally for planar case,
speculated on use for

X



Multi-scale dynamics

Slices of energy surface: Poincaré sections Uj
Tube dynamics: evolution U,

What about evolution U,?

Poincare Section
U» Zs U 2

Poincare Section
Ui




Multi-scale dynamics: Part 1

Slices of energy surface: Poincaré sections Uj
Tube dynamics: evolution U; —

What about evolution U,?

Poincare Section
U» Zs U 2

Poincare Section
Ui

X1



Motion near saddles

Near L or L, linearized vector field has eigenvalues

+ A\ and ::z'wj, ] — 2,...,N

Under local change of coordinates

H(q,p) = Aqip1 + Z (P} + @)



Motion near saddles

Equilibrium point is of type

saddle X center X

l.e..
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Motion near saddles

For energy h just above saddle pt, (q1,p1) =

(0,0) is

normally hyperbolic invariant manifold of bound orbits
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Motion near saddles

Note that M, ~ S?V—3

N =2 the circle St a single periodic orbit
N = 3, the 3-sphere S°, a set of periodic and quasi-periodic orbits

PN

p2
K\‘“ =SS = SN
\\f

e s

the IV canonical planes



Motion near saddles

Note that M, ~ S?V—3

N =2 the circle St a single periodic orbit
N = 3, the 3-sphere S°, a set of periodic and quasi-periodic orbits

Four “cylinders” or tubes of asymptotic orbits: stable, unstable
manifolds, W5 (M), W¥(M}), ~ S x R.




Motion near saddles: 3-body problem

B : bounded orbits (periodic/quasi-periodic): S°
A : asymptotic orbits to 3-sphere: S° x R (tubes)

T : transit and NT : non-transit orbits.

__ Exterior|
Realm | /

Forbidden
Realm

Projection to configuration space.
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Tube dynamics: inter-realm transport

Earth Realm Moon Realm

All motion between realms connected by necks around
saddles must occur through the interior of tubes!

'Koon, Lo, Marsden, Ross [2000,2001,2002], Gémez, Koon, Lo, Marsden, Masdemont, Ross [2004]

XVviil



Tube dynamics

Ui

U» Poincare Section
U,

Position Space Phase Space

Motion between Poincaré sections on M(FE)

System reduced to k-map dynamics between the k U;



Tube dynamics

Poincare
Section

T
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Position Space Phase Space

Motion between Poincaré sections on M(FE)

System reduced to k-map dynamics between the k U;
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Construction of orbits

search for an initial condition with a given
first in 2 d.o.f., then in 3 d.o.f.

X Realm

Forbidden
Realm

J Realm




onstruction of orbits — 2 d.o.f.

Consider how tubes connect the U,

Tix1.0
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Construction of orbits — 2 d.o.f.

06T

04r ([J]aS)
=(Ti,sNU3)
02t
y of
0.2} \
_ X,[JD
04 = (Tx, 1 NU3)
06
d | 062 | 064 | 066 | 068
y

Poincare Section Uj
x=1-w,y>0,x<0}

J realm
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Construction of orbits — 2 d.o.f.

Denote the intersection (X, [J])(([/], S) by (X, |J], S)

0.6 'I
04l ([J1.5)
0.2r1
. (X,[J].5)
y 0 = (X,[JD N (V1.S)
02} \
X.L0)
0.4}
-0.61
d | 0.(I32 | O.(I)4 | 0.66 | 0.68



Construction of orbits — 2 d.o.f.

Forward and backward numerical integration

X Realm

S Realm
O

Sun

Forbidden
Realm




Construction of orbits — 3 d.o.f.

Similar for 3 d.o.f.: Invariant manifold tubes S° x R

Poincaré section of energy surface

at © = constant, (v, 7, z, 2) C R*

Poincare Section

XXV1



Construction of orbits — 3 d.o.f.

Similar for 3 d.o.f.: Invariant manifold tubes S° x R

Poincaré section of energy surface

at x = constant, (y,9, 2z, %) C R*

Tube cross-section is a topological 3-sphere S* of radius r

S3 projection: disk x disk

XX Vil



Determining interior of S°

S projection: disk x disk

2 2 a2
r, + 1, =7

(y,y) Plane (2, 2) Plane



Determining interior of S°

For fixed (z, 2), projection onto (y, y) is a closed curve

7“5 S r

(y,y) Plane (2, 2) Plane



Determining interior of S°

For different (z, 2), a different closed curve in (y, )

7“5 S — r

(y,y) Plane (2, 2) Plane



Determining interior of S°

Cross-section of tube effectively reduced to a
two-parameter family of closed curves

y2+92:’r2—(22+22>

(y,y) Plane (2, 2) Plane



Determining interior of S°

Can be demonstrated numerically: {int(7.z)}(.

0 0.005 0.010 0.015 -0.005 0 0.005
y Z

(y,y) Plane (2, 2) Plane

Provides nice way to calculate interior of tube,
intersections of tubes, etc.
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ntersection of phase volumes

Find (X,J,S) orbit via tube intersection
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Intersection of phase volumes

Find (X,J,S) orbit via tube intersection
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All orbits in intersection correspond to transition

-0.02

-0.04

0.96 098 1 1.02 1.04
X

3D view xy-plane projection

Gémez, Koon, Lo, Marsden, Masdemont, Ross, Nonlinearity [2004]
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Other orbits obtained this way

104 ~ _po1
X y

Another example
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On the tubes, rather than in the tubes

T T T
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An L1-Lo heteroclinic connection
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Transition and collision

Interpret relative phase volumes as pro

babilities?

oy
7~

ransition between realms and/or collision.

“Ross [2003] Statistical theory of interior-exterior transition and collision probabilities for minor bodies

in the solar system

XXX VIl



Transition probabilities

Exterior
Realm

Rapid Transition
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Interior
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y (rotating frame)

Tube from
Jupiter] Interior Exterior
Realm| -

x (rotating frame)

Example: Comet transport between outside and inside
of Jupiter (i.e., Oterma-like transitions
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Transition probabilities

Orbits to Interior

Slice of Tube
to Interior

i\ Orbits Passing from
Exterior to Interior

Slice of Tube

from Exterior

Orbits from Exterior
Y
Poincaré Section
Phase volume ratio gives the to

pass from outside to inside Jupiter's orbit.

x|



Transition probabilities

Jupiter family comet transitions: X — S, S — X

Transition Probability for Jupiter Family Comets
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Oterma
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Capture time determined by tube dynamics

Temporary capture time profiles are structured

20

Electron Scattering Probability (%)

Electron Scattering Probability (%)
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Collision probabilities

eg, Shoemaker-Levy 9 and Earth-impacting asteroids
Compute from tube intersection with planet on Poincaré section

Planetary diameter is a parameter

«— Diameter of planet —

xliii



Collision probabilities

Poincare Section: Tube Intersecting a Planet
— CoIIiinon | | | | | |
=== Non-Collision

«— Diameter of planet —

Poincaré section through planet showing collision portion of tube
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Probability for comet collision with Jupiter

Collision Probability for Jupiter Family Comets

Collision probability (%)
N w H

=
T

-1.518 -1.517 -1.516 -1.515 -1.514 -1.513 -1.512
Ener
gy SL9
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Probability for NEA collision with Earth

Collision Probability for Near—Earth Asteroids

Collision probability (%)

-4 -3.5 -3
Energy (scaled) %10~

xlvi



Typical collision orbit

/

Earth Collision

1.5 million km

Coming from direction of sun; harder to detect; surprise!
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Multi-scale dynamics: Part 2

Slices of energy surface: Poincaré sections Uj
Tube dynamics: evolution U,

What about evolution U;? «—

Poincare Section
U Zs U,

Poincare Section
Ui

xlviii



Kicks at periapsis

Key idea: model particle motion as “kicks" at periapsis

Semimajor Axis vs. Time

------------

Aa—

In rotating frame where my, mo are fixed

Ross & Scheeres, STAM J. Appl. Dyn. Sys. [2007]
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Kicks at periapsis

Sensitive dependence on argument of periapse w

Semimajor Axis vs. Time

------------

Aa—

In rotating frame where my, mo are fixed

Ross & Scheeres, STAM J. Appl. Dyn. Sys. [2007]



Kicks at periapsis

Construct update map (wy, a1, €1) — (ws, as, )
using average perturbation per orbit by smaller mass

(w1,a1,€1)

li



Kicks at periapsis

Construct update map (wy, a1, €1) — (ws, as, )
using average perturbation per orbit by smaller mass

lii



Nearly integrable Hamiltonian

Particle assumed on near-Keplerian orbit around m;

Hamiltonian in nearly integrable action-angle form

H(1,0) = Hy(I) + pHi(1,0), n <1,
l.e..
H(L,G,l,w)=K(L)— G+ uR(L,G,l,w)

in Delaunay (action-angle) variables



Change in orbital elements over one particle orbit

Evolution of G (angular momentum)

@ ~ OR
dt M ow’
Approximate change in G over an orbit

AG:—,LL/ @—Rdt

ne orbit 8w

AK = Keplerian energy change over an orbit
AK = AG — uAR



Energy kick function

Changes have form
AK = pf(w),
f is the energy kick function with parameters K, &/

20+

10

20

-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

/T



Energy kick function

Changes have form
AK = pf(w),
f is the energy kick function with parameters K, &/

Semimajor Axis vs. Time

------------
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The periapsis kick map (Keplerian Map)

Cumulative effect of consecutive passes by perturber

Can construct an update map
(wWntt, Kny1) = F(wy, K,,) on the cylinder ¥ = ST xR,
l.e., F' > — ) where

(;U(Zi) _ (1% - i?}((;i)(Kn+uf(wn)))3/2>

Area-preserving (symplectic twist) map

Ex.: particle in Jupiter-Callisto system, © =5 x 107



Identify Keplerian map as Poincaré return map

Poincaré map at periapsis in orbital element space
F:Y—Ywhere X={l=0| H=F}



Verification of Keplerian map: phase portrait

Keplerian map

lix



Verification of Keplerian map: phase portrait

3 .,:a@;w?'f' :

S

£ PR
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Keplerian map numerical integration of full system

Keplerian map

— but breaks left-right symmetry present in original system
— can be removed using another method (Hamilton-Jacobi




Dynamics of Keplerian map

esonance zone3

Structured motion around resonance zone

3in the terminology of MacKay, Meiss, and Percival [1987

Ixi



Dynamics of Keplerian map

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

Resonance zone?

Structured motion around resonance zones

4in the terminology of MacKay, Meiss, and Percival [1987
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Large orbit changes via multiple resonance zones

multiple flybys for orbit reduction or expansion®

P

pgF o o

075

0.7

0.65 i L I B M L. \ -\ I L
25 -2 -1.5 -1 -0.5 0 0.5 1 15 2 2.5

Grover & Ross, J. Guid. Cont. Dyn. [2009]
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Large orbit changes, I',, = F"([)

W/7T
0.10
0.05 F()
AQ Olessssssssssssssssssnsnnnns / ......................
0.05
1 0.8 0.6 0.4 0.2 0 0.2 04 0.6 0.8 1
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Large orbit changes, I',, = F"([)
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Large orbit changes, I',, = F"([)

0 0.005 0.01 0.015 0.02 0.025
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Large orbit changes, I',, = F"([)

0.025

-0.05

-0.10

-0.15

0.005 0.006 0.007 0.008 0.009 0.010
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Large orbit changes, I',, = F"([)

X

0 0.005 0.01 - 0.02 0.025

-0.05

-0.10

-0.15

0.005 0.006 0.007 .008 09 0.010

0.05

-0.05

-0.10
-0.15

-0.20

0.008461 0.008463 0.008465 0.008467 0.008469
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orbit changes,

0/

0 0.005 0.01 - 0.02 0.025

I'1o

-0.05

-0.10

-0.15

0.005 0.006 0.007 .008 09 0.010

-0.10

[y
b

-0.15

-0.20 -

: example trajectory

0.008461 0.008463 0.008465 0.008467 0.008469
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Reachable orbits and diffusion

2ol Reachable Orbits
l E = —1.495 |
a 18} ﬁ_f_ff
1.6 E _ _1.5
5 10 7 15 20 o5

Diffusion in semimajor axis

. increases with F (larger kicks)
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Reachable orbits: upper boundary for small 1

Rotational Invariant Circle

N
=

A rotational invariant circle (RIC) RIC found in Keplerian map for pn =5 x 107°
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elationship to capture around perturber

Moon region

exit from jovicentric to moon region

Exit: where tube of capture orbits intersects >

Orbits reaching exit are ballistically captured,
passing by Lo
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elationship to capture around perturber

2. Poincare Section
at Periapsis

Jovian
Moon

exit from jovicentric to moon region

Exit: where tube of capture orbits intersects >

Orbits reaching exit are ballistically captured,
passing by Lo
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Relationship to capture around perturber

Jovian Moon

A7/
i
i,
diitir17774
iy

exit from jovicentric to moon region

Exit: where tube of capture orbits intersects >

Orbits reaching exit are ballistically captured,
passing by Lo
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Relationship to capture from infinity

K >0 | Hyperbolic orbits

Elliptical orbits

K <0

Captured from infinity
after previous periapsis

-1 0 1

w/m

_
Jerg, Junge, Ross [2009]
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Final word about Keplerian map

Extensions:

out of plane motion (4D map)
control in the presence of uncertainty
eccentric orbits for the perturbers

multiple perturbers
transfer from one body to another

Consider other problems with
spatially localized perturbations?
— chemistry, vortex dynamics, ...
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Conclusions

are related to transport
across rank 1 saddles (saddle x center x - -- X center)

In the restricted 3-body problem:

- the interior of tube manifolds
— related to capture, escape, transition, collision

provides analytical expression approx-
imating a Poincaré map
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Thank you!

For papers, movies, etc., visit:
www.shaneross.com

. AND SPACE MISSION DESIGN
Book available:

Dynamical systems, the three-body
problem, and space mission design
Koon, Lo, Marsden, Ross

Free download from:
www.shaneross.com/books
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