

Intersections of phase volumes bounded by invariant manifolds

Shane Ross

Engineering Science & Mechanics, Virginia Tech

www.shaneross.com

SIAM Conference on Applications of Dynamical Systems, May 2009

Introduction

Invariant manifolds of unstable bound orbits act as separatrices (codimension 1 surfaces)

Determine **transport**, e.g., collisions, transitions

Use analytical map of phase space where appropriate

Introduction

□ Value-added: results apply to similar problems in e.g., chemistry, biomechanics, boat capsize

3-Body Problem

Circular restricted 3-body problem

 \Box Two important landmarks, the unstable points L_1, L_2

3-Body Problem

Equations of motion in rotating frame describe P moving in an effective potential plus coriolis force (goes back to work of Jacobi, Hill, etc)

Effective Potential

Motion in energy surface

□ Hamiltonian function H(q, p)□ Energy surface of energy E is codim-1 $\Lambda A(E) = \int (q, p) + H(q, p) = h$

$$\mathcal{M}(E) = \{(q, p) \mid H(q, p) = E\}$$

 In 2 d.o.f., 3D surfaces foliating the 4D phase space (in 3 d.o.f., 5D energy surfaces)

Realms of possible motion

□ M_µ(E) partitioned into three realms
 e.g., Earth realm = phase space around Earth
 □ Energy E determines their connectivity

Realms of possible motion

Realms and tubes

• Realms connected by **tubes** in phase space $\simeq S^k \times \mathbb{R}$ — Conley & McGehee, 1960s, found these locally for planar case, speculated on use for "low energy transfers"

Multi-scale dynamics

- \Box Slices of energy surface: Poincaré sections U_i
- \Box Tube dynamics: evolution **between** U_i
- \Box What about evolution on U_i ?

Multi-scale dynamics: Part 1

□ Slices of energy surface: Poincaré sections U_i □ Tube dynamics: evolution **between** U_i ← □ What about evolution **on** U_i ?

\Box Near L_1 or L_2 , linearized vector field has eigenvalues $\pm \lambda$ and $\pm i\omega_j$, $j = 2, \ldots, N$

□ Under local change of coordinates

$$H(q, p) = \lambda q_1 p_1 + \sum_{i=2}^{N} \frac{\omega_i}{2} \left(p_i^2 + q_i^2 \right)$$

 \Box Equilibrium point is of type saddle \times center $\times \cdots \times$ center (N - 1 centers)

i.e., rank 1 saddle

the N canonical planes

□ For energy h just above saddle pt, $(q_1, p_1) = (0, 0)$ is normally hyperbolic invariant manifold of bound orbits

$$\mathcal{M}_h = \sum_{i=2}^N \frac{\omega_i}{2} \left(p_i^2 + q_i^2 \right) = h > 0.$$

the N canonical planes

$$\Box$$
 Note that $\mathcal{M}_h \simeq S^{2N-3}$

• N = 2, the circle S^1 , a single periodic orbit

• N = 3, the 3-sphere S^3 , a set of periodic and quasi-periodic orbits

the N canonical planes

$$\Box$$
 Note that $\mathcal{M}_h \simeq S^{2N-3}$

• N = 2, the circle S^1 , a single periodic orbit

• N = 3, the 3-sphere S^3 , a set of periodic and quasi-periodic orbits

Four "cylinders" or **tubes** of asymptotic orbits: stable, unstable manifolds, $W^s_{\pm}(\mathcal{M}_h), W^u_{\pm}(\mathcal{M}_h), \simeq S^3 \times \mathbb{R}$.

Motion near saddles: 3-body problem

- **B** : **bounded orbits** (periodic/quasi-periodic): S^3
- A : asymptotic orbits to 3-sphere: $S^3 \times \mathbb{R}$ (tubes)
- T : transit and NT : non-transit orbits.

Projection to configuration space.

Tube dynamics: inter-realm transport

 \circ Tube dynamics: All motion between realms connected by necks around saddles must occur through the interior of tubes 1

¹Koon, Lo, Marsden, Ross [2000,2001,2002], Gómez, Koon, Lo, Marsden, Masdemont, Ross [2004]

Tube dynamics

- Motion between Poincaré sections on $\mathcal{M}(E)$
- \circ System reduced to k-map dynamics between the k U_i

Tube dynamics

- Motion between Poincaré sections on $\mathcal{M}(E)$
- \circ System reduced to k-map dynamics between the k U_i

Construction of orbits

search for an initial condition with a given itinerary
first in 2 d.o.f., then in 3 d.o.f.

\Box Consider how tubes connect the U_i

 \Box Denote the intersection $(X, [J]) \bigcap ([J], S)$ by (X, [J], S)

□ Forward and backward numerical integration

- Similar for 3 d.o.f.: Invariant manifold tubes $S^3 \times \mathbb{R}$
- Poincaré section of energy surface

 ${\rm o}$ at $x={\rm constant},~(y,\dot{y},z,\dot{z})\subset \mathbb{R}^4$

- Similar for 3 d.o.f.: Invariant manifold tubes $S^3 \times \mathbb{R}$
- Poincaré section of energy surface

 ${\rm \circ}$ at $x={\rm constant},~(y,\dot{y},z,\dot{z})\subset \mathbb{R}^4$

• Tube cross-section is a topological **3**-sphere S^3 of radius r• S^3 projection: disk × disk

$\Box S^3$ projection: **disk** \times **disk**

 \Box For fixed (z, \dot{z}) , projection onto (y, \dot{y}) is a **closed curve**

 \Box For different (z, \dot{z}) , a different **closed curve** in (y, \dot{y})

Cross-section of tube effectively reduced to a **two-parameter family of closed curves**

$$y^2 + \dot{y}^2 = r^2 - (z^2 + \dot{z}^2)$$

• Can be demonstrated numerically: $\{int(\gamma_{z\dot{z}})\}_{(z,\dot{z})}$

 Provides nice way to calculate interior of tube, intersections of tubes, etc.

Intersection of phase volumes

\Box Find (X,J,S) orbit via tube intersection

Intersection of phase volumes

□ Find (X,J,S) orbit via tube intersection

All orbits in intersection correspond to transition

Gómez, Koon, Lo, Marsden, Masdemont, Ross, Nonlinearity [2004]

Other orbits obtained this way

Another example
On the tubes, rather than in the tubes

An L_1 - L_2 heteroclinic connection

Transition and collision

\Box Interpret relative phase volumes as probabilities²

□ Transition between realms and/or collision.

 2 Ross [2003] Statistical theory of interior-exterior transition and collision probabilities for minor bodies in the solar system

Transition probabilities

Example: Comet transport between outside and inside of Jupiter (i.e., Oterma-like transitions)

Transition probabilities

Poincaré Section

Phase volume ratio gives the relative probability to pass from outside to inside Jupiter's orbit.

Transition probabilities

\Box Jupiter family comet transitions: $X \rightarrow S, S \rightarrow X$

Capture time determined by tube dynamics

Temporary capture time profiles are structured

Collision probabilities

o eg, Shoemaker-Levy 9 and Earth-impacting asteroids

- Compute from tube intersection with planet on Poincaré section
- Planetary diameter is a parameter

 $\leftarrow \text{ Diameter of planet} \rightarrow$

Collision probabilities

• Poincaré section through planet showing collision portion of tube

Probability for comet collision with Jupiter

Probability for NEA collision with Earth

Typical collision orbit

• Coming from direction of sun; harder to detect; surprise!

Multi-scale dynamics: Part 2

□ Slices of energy surface: Poincaré sections U_i □ Tube dynamics: evolution **between** U_i □ What about evolution **on** U_i ? ←

Kicks at periapsis

□ Key idea: model particle motion as "**kicks**" at periapsis

In rotating frame where m_1, m_2 are fixed

Ross & Scheeres, SIAM J. Appl. Dyn. Sys. [2007]

Kicks at periapsis

\Box Sensitive dependence on argument of periapse ω

In rotating frame where m_1, m_2 are fixed

Ross & Scheeres, SIAM J. Appl. Dyn. Sys. [2007]

Construct **update map** $(\omega_1, a_1, e_1) \mapsto (\omega_2, a_2, e_2)$ using average perturbation per orbit by smaller mass

Construct **update map** $(\omega_1, a_1, e_1) \mapsto (\omega_2, a_2, e_2)$ using average perturbation per orbit by smaller mass

Nearly integrable Hamiltonian

Particle assumed on near-Keplerian orbit around m₁
Hamiltonian in nearly integrable action-angle form

$$H(I,\theta) = H_0(I) + \mu H_1(I,\theta), \quad \mu \ll 1,$$
 i.e.,

$$H(L,G,l,\omega)=K(L)-G+\mu R(L,G,l,\omega)$$

in Delaunay (action-angle) variables

Change in orbital elements over one particle orbit

□ Changes have form

$$\Delta K = \mu f(\omega),$$

f is the **energy kick function** with parameters K, E

□ Changes have form

$$\Delta K = \mu f(\omega),$$

L

f is the **energy kick function** with parameters K, E

The periapsis kick map (Keplerian Map)

Cumulative effect of **consecutive passes** by perturber

- $\Box \text{ Can construct an update map}$ $(\omega_{n+1}, K_{n+1}) = F(\omega_n, K_n) \text{ on the cylinder } \Sigma = S^1 \times \mathbb{R},$ $\text{ i.e., } F : \Sigma \to \Sigma \text{ where}$ $\begin{pmatrix} \omega_{n+1} \\ K_{n+1} \end{pmatrix} = \begin{pmatrix} \omega_n - 2\pi(-2(K_n + \mu f(\omega_n)))^{-3/2} \\ K_n + \mu f(\omega_n) \end{pmatrix}$
- □ Area-preserving (symplectic twist) map □ Ex.: particle in Jupiter-Callisto system, $\mu = 5 \times 10^{-5}$

Identify Keplerian map as Poincaré return map

□ **Poincaré map at periapsis** in orbital element space □ $F : \Sigma \to \Sigma$ where $\Sigma = \{l = 0 \mid H = E\}$

Verification of Keplerian map: phase portrait

Verification of Keplerian map: phase portrait

Keplerian map

numerical integration of full system

• Keplerian map = fast orbit propagator

- preserves phase space features
 - but breaks left-right symmetry present in original system
 - can be removed using another method (Hamilton-Jacobi)

Dynamics of Keplerian map

Resonance zone³

Structured motion around resonance zones

³in the terminology of MacKay, Meiss, and Percival [1987]

Dynamics of Keplerian map

Resonance zone⁴

Structured motion around resonance zones

⁴in the terminology of MacKay, Meiss, and Percival [1987]

Large orbit changes via multiple resonance zones

\Box multiple flybys for orbit reduction or expansion⁵

⁵Grover & Ross, J. Guid. Cont. Dyn. [2009]

Reachable orbits and diffusion

 \Box Diffusion in semimajor axis ... increases with E (larger kicks)

Reachable orbits: upper boundary for small μ

A rotational invariant circle (RIC)

RIC found in Keplerian map for $\mu = 5 \times 10^{-6}$

Relationship to capture around perturber

exit from jovicentric to moon region

□ Exit: where tube of capture orbits intersects ∑
□ Orbits reaching exit are ballistically captured, passing by L₂
Relationship to capture around perturber

exit from jovicentric to moon region

□ Exit: where tube of capture orbits intersects ∑
 □ Orbits reaching exit are ballistically captured, passing by L₂

Relationship to capture around perturber

exit from jovicentric to moon region

□ Exit: where tube of capture orbits intersects ∑
 □ Orbits reaching exit are ballistically captured, passing by L₂

Relationship to capture from infinity

Final word about Keplerian map

Extensions:

- out of plane motion (4D map)
- o control in the presence of uncertainty
- o eccentric orbits for the perturbers
- multiple perturbers
 transfer from one body to another

- Consider other problems with spatially localized perturbations?
 - chemistry, vortex dynamics, ...

Invariant manifold tubes are related to transport across rank 1 saddles (saddle \times center $\times \cdots \times$ center)

□ In the restricted 3-body problem:

Tube dynamics: the interior of tube manifolds — related to capture, escape, transition, collision

Keplerian map provides analytical expression approximating a Poincaré map

The End

Thank you! For papers, movies, etc., visit: www.shaneross.com

Book available:

Dynamical systems, the three-body problem, and space mission design Koon, Lo, Marsden, Ross

Free download from: www.shaneross.com/books

