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Introduction

� Invariant manifolds of unstable bound orbits act as
separatrices (codimension 1 surfaces)

� Determine transport, e.g., collisions, transitions

� Use analytical map of phase space where appropriate
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Introduction

� Value-added: results apply to similar problems in
e.g., chemistry, biomechanics, boat capsize
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3-Body Problem

�Circular restricted 3-body problem

� Two important landmarks, the unstable points L1, L2
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3-Body Problem

� Equations of motion in rotating frame describe P
moving in an effective potential plus coriolis force
(goes back to work of Jacobi, Hill, etc)
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Motion in energy surface

� Hamiltonian function H(q, p)

� Energy surface of energy E is codim-1

M(E) = {(q, p) | H(q, p) = E}

� In 2 d.o.f., 3D surfaces foliating the 4D phase space (in

3 d.o.f., 5D energy surfaces)
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Realms of possible motion

"No Fly Zone"

Particle/Spacecraft

L1

Earth
Realm

Moon

Moon
Realm

�Mµ(E) partitioned into three realms

e.g., Earth realm = phase space around Earth

� Energy E determines their connectivity
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Realms of possible motion
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Realms and tubes

L1

Earth

y

x

py

Earth Realm Moon Realm

L1

Position Space Phase Space (Position + Velocity)

◦ Realms connected by tubes in phase space ' Sk × R
— Conley & McGehee, 1960s, found these locally for planar case,
speculated on use for “low energy transfers”
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Multi-scale dynamics

� Slices of energy surface: Poincaré sections Ui

� Tube dynamics: evolution between Ui

� What about evolution on Ui?
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Multi-scale dynamics: Part 1

� Slices of energy surface: Poincaré sections Ui

� Tube dynamics: evolution between Ui ←−
� What about evolution on Ui?
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Motion near saddles

� Near L1 or L2, linearized vector field has eigenvalues

±λ and ±iωj, j = 2, . . . , N

� Under local change of coordinates

H(q, p) = λq1p1 +

N∑
i=2

ωi

2

(
p2

i + q2
i

)
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Motion near saddles

� Equilibrium point is of type
saddle× center× · · · × center (N − 1 centers)

i.e., rank 1 saddle
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Motion near saddles

� For energy h just above saddle pt, (q1, p1) = (0, 0) is
normally hyperbolic invariant manifold of bound orbits

Mh =

N∑
i=2

ωi

2

(
p2

i + q2
i

)
= h > 0.
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Motion near saddles

� Note thatMh ' S2N−3

◦ N = 2, the circle S1, a single periodic orbit

◦ N = 3, the 3-sphere S3, a set of periodic and quasi-periodic orbits
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Motion near saddles

� Note thatMh ' S2N−3

◦ N = 2, the circle S1, a single periodic orbit

◦ N = 3, the 3-sphere S3, a set of periodic and quasi-periodic orbits

� Four “cylinders” or tubes of asymptotic orbits: stable, unstable
manifolds, W s

±(Mh), W
u
±(Mh), ' S3 × R.
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Motion near saddles: 3-body problem

•B : bounded orbits (periodic/quasi-periodic): S3

•A : asymptotic orbits to 3-sphere: S3 × R (tubes)

•T : transit and NT : non-transit orbits.
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Projection to configuration space.
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Tube dynamics: inter-realm transport

y

x

py

Earth Realm Moon Realm

L1

◦ Tube dynamics: All motion between realms connected by necks around
saddles must occur through the interior of tubes1

1Koon, Lo, Marsden, Ross [2000,2001,2002], Gómez, Koon, Lo, Marsden, Masdemont, Ross [2004]
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Tube dynamics

L1
Earth

U1 U2

L1

Poincare Section

U2

Position Space Phase Space

◦Motion between Poincaré sections onM(E)

◦ System reduced to k-map dynamics between the k Ui
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Tube dynamics

L1
Earth

U1 U2

Poincare

Section

Tube A

Tube B

Position Space Phase Space

◦Motion between Poincaré sections onM(E)

◦ System reduced to k-map dynamics between the k Ui
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Construction of orbits

� search for an initial condition with a given itinerary

� first in 2 d.o.f., then in 3 d.o.f.
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Construction of orbits — 2 d.o.f.

� Consider how tubes connect the Ui
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Construction of orbits — 2 d.o.f.

J realm
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Construction of orbits — 2 d.o.f.

� Denote the intersection (X, [J ])
⋂

([J ], S) by (X, [J ], S)
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Construction of orbits — 2 d.o.f.

� Forward and backward numerical integration
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Construction of orbits — 3 d.o.f.

• Similar for 3 d.o.f.: Invariant manifold tubes S3 × R
• Poincaré section of energy surface

◦ at x = constant, (y, ẏ, z, ż) ⊂ R4

Poincare Section
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Construction of orbits — 3 d.o.f.

• Similar for 3 d.o.f.: Invariant manifold tubes S3 × R
• Poincaré section of energy surface

◦ at x = constant, (y, ẏ, z, ż) ⊂ R4

• Tube cross-section is a topological 3-sphere S3 of radius r

◦ S3 projection: disk × disk
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Determining interior of S3

� S3 projection: disk × disk

y2 + ẏ2 + z2 + ż2 = r2

r2
y + r2

z = r2

(y, ẏ) Plane (z, ż) Plane

xxviii



Determining interior of S3

� For fixed (z, ż), projection onto (y, ẏ) is a closed curve

y2 + ẏ2 = r2 − (z2 + ż2)
r2
y = r2 − r2

z

(y, ẏ) Plane (z, ż) Plane
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Determining interior of S3

� For different (z, ż), a different closed curve in (y, ẏ)

y2 + ẏ2 = r2 − (z2 + ż2)
r2
y = r2 − r2

z

(y, ẏ) Plane (z, ż) Plane

xxx



Determining interior of S3

� Cross-section of tube effectively reduced to a
two-parameter family of closed curves

y2 + ẏ2 = r2 − (z2 + ż2)

(y, ẏ) Plane (z, ż) Plane
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Determining interior of S3

• Can be demonstrated numerically: {int(γzż)}(z,ż)
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Intersection of phase volumes

� Find (X,J,S) orbit via tube intersection
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Intersection of phase volumes

� Find (X,J,S) orbit via tube intersection
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All orbits in intersection correspond to transition

3D view xy-plane projection

Gómez, Koon, Lo, Marsden, Masdemont, Ross, Nonlinearity [2004]
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Other orbits obtained this way
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On the tubes, rather than in the tubes
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Transition and collision

� Interpret relative phase volumes as probabilities2

� Transition between realms and/or collision.
2Ross [2003] Statistical theory of interior-exterior transition and collision probabilities for minor bodies

in the solar system
xxxviii



Transition probabilities

Exterior
Realm

Interior
Realm

Jupiter
Realm

Tube to
Interior

Tube from
Exterior

Jupiter
Sun

Rapid Transition

x (rotating frame)

y
 (

ro
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n
g
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m

e
)

L2L1

� Example: Comet transport between outside and inside
of Jupiter (i.e., Oterma-like transitions)
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Transition probabilities

y

p
y Orbits Passing from

Exterior to Interior

Slice of Tube
to Interior

Slice of Tube
from Exterior

Orbits from Exterior

Orbits to Interior

Poincaré Section

� Phase volume ratio gives the relative probability to
pass from outside to inside Jupiter’s orbit.
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Transition probabilities

� Jupiter family comet transitions: X → S, S → X
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Capture time determined by tube dynamics

� Temporary capture time profiles are structured
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Collision probabilities

◦ eg, Shoemaker-Levy 9 and Earth-impacting asteroids

◦ Compute from tube intersection with planet on Poincaré section

◦ Planetary diameter is a parameter

← Diameter of planet →
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Collision probabilities
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◦ Poincaré section through planet showing collision portion of tube
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Probability for comet collision with Jupiter

−1.518 −1.517 −1.516 −1.515 −1.514 −1.513 −1.512
0

1

2

3

4

5

Energy

C
o

lli
si

o
n

 p
ro

b
ab

ili
ty

 (
%

)
Collision Probability for Jupiter Family Comets

L1
L2

SL9
xlv



Probability for NEA collision with Earth
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Typical collision orbit

x 

y Earth Collision

L1

||

1.5 million km

◦ Coming from direction of sun; harder to detect; surprise!
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Multi-scale dynamics: Part 2

� Slices of energy surface: Poincaré sections Ui

� Tube dynamics: evolution between Ui

� What about evolution on Ui? ←−
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Kicks at periapsis

� Key idea: model particle motion as “kicks” at periapsis

m1 

Δa−
Δa+

Δa−

Δa+

Semimajor Axis vs. Time 

m2 
 

In rotating frame where m1, m2 are fixed

Ross & Scheeres, SIAM J. Appl. Dyn. Sys. [2007]
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Kicks at periapsis

� Sensitive dependence on argument of periapse ω

m1 

Δa−
Δa+

Δa−

Δa+

Semimajor Axis vs. Time 

m2 
 

In rotating frame where m1, m2 are fixed

Ross & Scheeres, SIAM J. Appl. Dyn. Sys. [2007]
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Kicks at periapsis

� Construct update map (ω1, a1, e1) 7→ (ω2, a2, e2)
using average perturbation per orbit by smaller mass

(ω1,a1,e1)
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Kicks at periapsis

� Construct update map (ω1, a1, e1) 7→ (ω2, a2, e2)
using average perturbation per orbit by smaller mass

(ω1,a1,e1)

(ω2,a2,e2)
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Nearly integrable Hamiltonian

� Particle assumed on near-Keplerian orbit around m1

� Hamiltonian in nearly integrable action-angle form

H(I, θ) = H0(I) + µH1(I, θ), µ� 1,

i.e.,

H(L, G, l, ω) = K(L)−G + µR(L, G, l, ω)

in Delaunay (action-angle) variables

liii



Change in orbital elements over one particle orbit

� Evolution of G (angular momentum)

dG

dt
= −µ

∂R

∂ω
,

� Approximate change in G over an orbit

∆G = −µ

∫
one orbit

∂R

∂ω
dt

� ∆K = Keplerian energy change over an orbit

∆K = ∆G− µ∆R
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Energy kick function

� Changes have form

∆K = µf (ω),

f is the energy kick function with parameters K, E
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Energy kick function

� Changes have form

∆K = µf (ω),

f is the energy kick function with parameters K, E
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m2 
ω max

 
−ω max
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The periapsis kick map (Keplerian Map)

� Cumulative effect of consecutive passes by perturber

� Can construct an update map
(ωn+1, Kn+1) = F (ωn, Kn) on the cylinder Σ = S1×R,
i.e., F : Σ→ Σ where(

ωn+1

Kn+1

)
=

(
ωn − 2π(−2(Kn + µf (ωn)))

−3/2

Kn + µf (ωn)

)
� Area-preserving (symplectic twist) map

� Ex.: particle in Jupiter-Callisto system, µ = 5× 10−5
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Identify Keplerian map as Poincaré return map

F(ω,K)

Σ

F

(ω,K)

� Poincaré map at periapsis in orbital element space

� F : Σ→ Σ where Σ = {l = 0 | H = E}
lviii



Verification of Keplerian map: phase portrait

Keplerian map

lix



Verification of Keplerian map: phase portrait

Keplerian map numerical integration of full system

◦ Keplerian map = fast orbit propagator

◦ preserves phase space features
— but breaks left-right symmetry present in original system
— can be removed using another method (Hamilton-Jacobi)
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Dynamics of Keplerian map
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Resonance zone3

� Structured motion around resonance zones

3in the terminology of MacKay, Meiss, and Percival [1987]
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Dynamics of Keplerian map
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� Structured motion around resonance zones

4in the terminology of MacKay, Meiss, and Percival [1987]
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Large orbit changes via multiple resonance zones

� multiple flybys for orbit reduction or expansion5

P

m1

m2

5Grover & Ross, J. Guid. Cont. Dyn. [2009]
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Large orbit changes, Γn = F n(Γ0)
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Large orbit changes, Γn = F n(Γ0)
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Large orbit changes, Γn = F n(Γ0)
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Large orbit changes, Γn = F n(Γ0)
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Large orbit changes, Γn = F n(Γ0)
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Large orbit changes, Γn = F n(Γ0)
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Reachable orbits and diffusion
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Reachable Orbits  

 

E = −1.495

E = −1.5

� Diffusion in semimajor axis

... increases with E (larger kicks)
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Reachable orbits: upper boundary for small µ

A rotational invariant circle (RIC) RIC found in Keplerian map for µ = 5× 10−6
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Relationship to capture around perturber

Exit

Moon region

neck

Σ

exit from jovicentric to moon region

� Exit: where tube of capture orbits intersects Σ

� Orbits reaching exit are ballistically captured,
passing by L2

lxxii



Relationship to capture around perturber

Jupiter 

Jovian 

Moon 

P 

Σe: Poincare Section
at Periapsis

 

exit from jovicentric to moon region

� Exit: where tube of capture orbits intersects Σ

� Orbits reaching exit are ballistically captured,
passing by L2

lxxiii



Relationship to capture around perturber

 Jovian Moon 

L2 

exit from jovicentric to moon region

� Exit: where tube of capture orbits intersects Σ

� Orbits reaching exit are ballistically captured,
passing by L2
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Relationship to capture from infinity

−1 0 1 

0 

K > 0

ω/π

K < 0

Hyperbolic orbits

Elliptical orbits

Captured from infinity
after previous periapsis

Jerg, Junge, Ross [2009]
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Final word about Keplerian map

� Extensions:

◦ out of plane motion (4D map)

◦ control in the presence of uncertainty

◦ eccentric orbits for the perturbers

◦ multiple perturbers
transfer from one body to another

G

E

◦ Consider other problems with
spatially localized perturbations?
– chemistry, vortex dynamics, ...
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Conclusions

� Invariant manifold tubes are related to transport
across rank 1 saddles (saddle× center× · · · × center)

� In the restricted 3-body problem:

� Tube dynamics: the interior of tube manifolds
— related to capture, escape, transition, collision

� Keplerian map provides analytical expression approx-
imating a Poincaré map
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The End

Thank you!

For papers, movies, etc., visit:
www.shaneross.com

Book available:

Dynamical systems, the three-body
problem, and space mission design
Koon, Lo, Marsden, Ross

Free download from:
www.shaneross.com/books
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