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Southern California coast: highly mixed marine ecosystem

Fish larva transport, Cheryl Harrison, OSU; Harrison, Siegel, Mitarai [2013], Mitarai et al [2009]
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Southern California coast: highly mixed marine ecosystem

Sea surface height (streamlines if ocean surface velocity)
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Ghost rods in microfluidic mixer

• Viscous flow in a 2D box (described by Mark Stremler on Monday)

streamlines for τf = 1 tracer blob (τf > 1)

• piecewise constant vector field (piecewise steady flow)
t ∈ [nτf , (n + 1)τf/2), top streamline pattern

t ∈ [(n + 1)τf/2, (n + 1)τf), bottom streamline pattern

• System has parameter τf , which we treat as a bifurcation parameter
— critical point τ∗f = 1
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Ghost rods in microfluidic mixer

• For τf = 1, braid on 3 strands act
as ‘ghost rods’ stirring the fluid

• Their braid has hTN = 0.962 from
Thurston-Nielsen Classification Theorem

• Actual for flow hflow = 0.964

• ⇒ hTN is an excellent lower bound
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Topological entropy continuity across critical point
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Topological entropy continuity across critical point
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Identifying ‘ghost rods’?

Poincaré section for τf < 1 ⇒ no obvious structure!

• Note the absence of any elliptical islands

• No periodic orbits of low period

• Is the phase space featureless?
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Almost-invariant / almost-cyclic set approach

• Identify almost-invariant sets (AISs) using probabilistic point of view

• Relatedly, almost-cyclic sets (ACSs)1

• Create box partition of phase space B = {B1, . . . Bq}, with q large

• Consider a q-by-q transition (Ulam) matrix, P , where

Pij =
m(Bi ∩ f−1(Bj))

m(Bi)
,

the transition probability from Bi
to Bj using, e.g., f = φt+T

t , com-
puted numerically

• P approximates P , Perron-Frobenius operator
— which evolves densities, ν, over one iterate of f , as Pν

• Typically, we use a reversibilized operator R, obtained from P

1Dellnitz & Junge [1999], Froyland & Dellnitz [2003]
ix



Identifying AISs by spectrum-partitioning

top 200 eigenvalues of P top 200 eigenvalues of R

• Invariant densities are those fixed under P , Pν = ν, i.e., eigenvalue 1

• The other real eigenvalues can identify almost-invariant sets

Dellnitz, Froyland, Sertl [2000] Nonlinearity
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Identifying ‘ghost rods’: almost-cyclic sets

Poincaré section with no obvious structure

• Return to τf < 1 case, where no periodic orbits of low period known

• What are the AISs and ACSs here?
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Identifying ‘ghost rods’: almost-cyclic sets

Top eigenvectors of R for τf = 0.99 reveal hierarchy of phase space structures

ν2

ν3 ν4

ν5 ν6
xii



Identifying ‘ghost rods’: almost-cyclic sets

The zero contour (black) is the boundary between the two almost-invariant sets.

• Three-component AIS made of 3 ACSs of period 3

• ACSs, in effect, replace periodic orbits for TNCT
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Identifying ‘ghost rods’: almost-cyclic sets

ghost 
manifolds

The zero contour (black) is the boundary between the two almost-invariant sets.

• Three-component AIS made of 3 ACSs of period 3

• ACSs, in effect, replace periodic orbits for TNCT

• Also: we see a remnant of the ‘stable and unstable manifolds’
of the saddle points, despite no saddle points – ‘ghost manifolds’?

xiv



Identifying ‘ghost rods’: almost-cyclic sets

Almost-cyclic sets stirring the surrounding fluid like ‘ghost rods’
— works even when periodic orbits are absent!

Movie shown is second eigenvector for R
t+τf
t for t ∈ [0, τf )

xv



Identifying ‘ghost rods’: almost-cyclic sets

(a)

(b)

(c)

(d)

x

y

x

t

f

f

f b

Braid of ACSs gives lower bound of entropy via Thurston-Nielsen
— One only needs approximately cyclic blobs of fluid
— But, theorems apply only to periodic points!
— Stremler, Ross, Grover, Kumar [2011] Phys. Rev. Lett.
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Topological entropy vs. bifurcation parameter
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topological entropy as a function of τf

• hTN shown for ACS braid on 3 strands
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Eigenvalues/eigenvectors vs. bifurcation parameter

Eigenspectrum of P changes with the parameter τf
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Eigenvalues/eigenvectors vs. bifurcation parameter

Top eigenvalues of R as parameter τf changes
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Eigenvalues/eigenvectors vs. bifurcation parameter

Genuine eigenvalue crossings?

Eigenvalues generically avoid

crossings if there is no symme-

try present (Dellnitz, Melbourne,

1994)
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Eigenvalues/eigenvectors vs. bifurcation parameter

Movie shows change in eigenvector along

thick red branch (a to f), as τf decreases.

Grover, Ross, Stremler, Kumar [2012] Chaos
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Bifurcation of ACSs

For example, braid on 13 strands for τf = 0.93

Movie shown is second eigenvector for P
t+τf
t for t ∈ [0, τf )

Thurson-Nielsen for this braid provides lower bound on topological entropy
xxii



Sequence of ACS braids bounds entropy

0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
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1

10 strands

13 strands
16 strands 3 strands

8 strands

For various braids of ACSs, the calculated entropy is given, bounding from
below the true topological entropy over the range where the braid exists
Grover, Ross, Stremler, Kumar [2012] Chaos
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Speculation: trends in eigenvalues/modes for prediction
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Speculation: trends in eigenvalues/modes for prediction

• Duffing system with small noise: six largest eigenvalues of the reversibilized discretized

transfer operator in dependence of the bifurcation parameter (Junge, Marsden, Mezic 2004)
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Predict critical transitions in geophysical transport?

Ozone data (Lekien and Ross [2010] Chaos)
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Predict critical transitions in geophysical transport?

• Different eigenmodes can correspond to dramatically different behavior.

• Some eigenmodes increase in importance while others decrease

• Can we predict dramatic changes in system behavior?

• e.g., predicting major changes in geophysical transport patterns??

• Ongoing work with E. Bollt, O. Junge, K. Padberg-Gehle, N. Santitissadeekorn
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Predict critical transitions in geophysical transport?

• Look at simplest representatives of mode-switching or other bifurcation phenomena
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Coherent sets and set-based definition of FTLE

• Consider, e.g., a flow φt+T
t in (x1, x2) ∈ R2.

• Evolution of set B ⊂ R2 viewed as evolution of two random variables
X1 and X2 with joint probability density function f (x1, x2), initially
uniform on B, f = 1

µ(B)
1B ( 1B the characteristic function of B )

• Under the action of the flow φt+T
t , f is mapped to Pf where P is the

associated Perron-Frobenius operator.

• Let I(f ) be the covariance of f and I(Pf ) the covariance of Pf .

Deformation of a disk under the flow during [t, t + T ]
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Coherent sets and set-based definition of FTLE

•Definition. The covariance-based FTLE of B is

σI(B, t, T ) =
1

|T |
log

√
λmax(I(Pf ))

λmax(I(f ))


• Tallapragada & Ross [2013] Comm. Nonlinear Sci. Numerical Simulation

• Reduces to usual definition of FTLE, σ, in the limit of small sets B;
e.g., for the disk in an area-perserving flow, σ = σI = 1

|T | log
(a1

a

)

Deformation of a disk under the flow during [t, t + T ]
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Coherent sets and set-based definition of FTLE

• The coherence of a set B during [t, t + T ] is measured by closeness of
σI(B, t, T ) to zero.

• Essential feature of a coherent set: scalar dispersion within it is low.

• This definition also can identify non-mixing translating sets.

xxxi



Coherent sets and set-based definition of FTLE

• The coherence of a set B during [t, t + T ] is measured by closeness of
σI(B, t, T ) to zero.

• Essential feature of a coherent set: scalar dispersion within it is low.

• This definition also can identify non-mixing translating sets.

• Preselection: Set a heuristic threshold on σI(B, t, T ) to identify regionz
which may contain coherent sets.

• Then use other methods to identify optimal coherence.
e.g., Froyland, Santitisadeekorn, Monahan [2010], Haller, Beron-Vera [2012]

• Notice, coherent sets will valleys be separated by ridges of high FTLE,
i.e., LCS
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Coherent sets in microfluidic mixer from before

FTLE during [0, τf ]
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Coherent sets in microfluidic mixer from before

Sets of coherence σI(0, τf ) < 0.06
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Coherent sets in microfluidic mixer from before

Compare with AIS (from second eigenvector of R)
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Coherent sets in microfluidic mixer from before

Compare high-coherence sets with low-coherence set (gray)
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Coherent sets in microfluidic mixer from before
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Coherent sets in fluid experiments
A particle image velocimetry (PIV) fluid experiment (Hubble [2011]); Vlachos lab (Virginia Tech/Purdue)

Data processing and FTLE computations by S. Raben, 2012
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Coherent sets in fluid experiments

Coherent sets in forward time [0, 1 sec] along with usual FTLE ridges
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Coherent sets in fluid experiments

Coherent sets in forward and backward time, [−1 sec, 1 sec]
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Coherent sets in the atmosphere

• Coherent sets during 24 hours starting 09:00 1 May 2007
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Coherent sets in the atmosphere that braid

Andrea at one snapshot; LCS shown (orange = repelling, blue = attracting)
xlii



Coherent sets in the atmosphere that braid

three sets: magenta, green, purple
xliii



Coherent sets in the atmosphere that braid

t

Sets form pseudo-Anosov braid on three strands
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Airborne diseases which ride coherent sets
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Coherent filament with high pathogen values

12:00 UTC 1 May 2007 15:00 UTC 1 May 2007 18:00 UTC 1 May 2007

Sampling

 location

(d) (e) (f)

(a) (b) (c)

100 km 100 km 100 km

Tallapragada et al [2011] Chaos; Schmale et al [2012] Aerobiologia; BozorgMagham et al [2013] Physica D
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Coherent filament with high pathogen values

12:00 UTC 1 May 2007 15:00 UTC 1 May 2007 18:00 UTC 1 May 2007
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Tallapragada et al [2011] Chaos; Schmale et al [2012] Aerobiologia; BozorgMagham et al [2013] Physica D
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Final words on coherent sets from data

• Geophysical and engineering fluid applications of set-oriented approaches

• From FTLE, get first-order picture of coherent sets, the ‘valleys’ as
opposed to the ridges; useful for engineers.

• Considered the dependence of the transfer operator spectrum on a sys-
tem parameter; micro mixer application
— observed bifurcation of braid along certain branch
— mode-switching

• Future work: predicting bifurcations in transport structure from transfer
operator trends
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The End Thank You

www.shaneross.com
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