Geometry of phase space transport in dynamical systems

Shane Ross
Engineering Science and Mechanics, Virginia Tech

www.shaneross.com
ICIAM, July 2011

MultiSTEPS: MultiScale Transport in Virginia Environmental \& Physiological Systems, www.multisteps.esm.vt.edu

The tale of a confused comet

- comet Oterma from 1910 to 1980
- Rapid transition: outside to inside Jupiter's orbit; temporarily captured.

The tale of a confused comet

- Oterma's orbit in rotating frame with special nearby orbits (green)

Natural Pathways for Fuel Efficiency

Orbiting Jupiter's moons

zero fuel trajectory
\square Fuel-efficient tours of Jupiter's moons

Interplanetary transport network

Natural pathways winding through the solar system

Oceanic transport network

Ocean currents: natural pathways on Earth

Atmospheric transport network

Atmospheric transport network

Transport networks: overview

\square Main objective: geometric description of transport

- insight into phase space mixing and regions of further interest
- efficient control schemes
\square Motivating principle: structures guiding transport — especially systems with symmetry, e.g., Hamiltonian
\square celestial mechanics example
\square geophysical flow example

Interplanetary transport: main ideas

\square Break N-body problem into several 3-body problems
\square Invariant manifolds of unstable bound orbits act as separatrices (codimension 1 surfaces)
\square Determine transport, e.g., collisions, transitions

3-Body Problem

- Restricted 3-body approximation

$\square P$ in field of two massive bodies, m_{1} and m_{2}
$\square x-y$ frame rotates w.r.t. $X-Y$ inertial frame

3-Body Problem

\square Equations of motion in rotating frame describe P moving in effective potential plus a coriolis force (goes back to work of Jacobi, Hill, etc)

Effective Potential

Hamiltonian system

\square Hamiltonian function (2 d.o.f.) - time-independent

$$
H\left(x, y, p_{x}, p_{y}\right)=\frac{1}{2}\left(\left(p_{x}+y\right)^{2}+\left(p_{y}-x\right)^{2}\right)+\bar{U}(x, y)
$$

where p_{x} and p_{y} are the conjugate momenta, and

$$
\bar{U}(x, y)=-\frac{1}{2}\left(x^{2}+y^{2}\right)-\frac{1-\mu}{r_{1}}-\frac{\mu}{r_{2}}
$$

where $r_{1} \& r_{2}$ are the distances of P from $m_{1} \& m_{2}$ and

$$
\mu=\frac{m_{2}}{m_{1}+m_{2}} \in(0,0.5]
$$

For systems of interest, $\mu \approx 10^{-6}-10^{-2}$

Motion in energy surface

\square Energy surface of energy E is codim- 1 surface

$$
\mathcal{M}(E)=\{(\mathrm{q}, \mathrm{p}) \mid H(\mathrm{q}, \mathrm{p})=E\} .
$$

$\square \ln 2$ d.o.f., 3D surfaces foliating the 4D phase space (in 3 d.o.f., 5D energy surfaces)

Realms of possible motion

$\square \mathcal{M}_{\mu}(E)$ partitioned into three realms e.g., Earth realm $=$ phase space around Earth
\square Energy E determines their connectivity

Realms of possible motion

Case 1:E<E1

Case 2: $E_{1}<E<E_{2}$

Case 3: $E_{2}<E<E_{3}$

Case 4 : $E_{3}<E<E_{4}$

Case $5: E>E_{4}$

Orbits in neck regions between realms

\square Orbits exist around $L_{1} \& L_{2}$; periodic \& quasi-periodic

- Unstable bound orbits: Lyapunov, halo and Lissajous orbits
- their stable/unstable invariant manifolds are tubes, play a key role

The location of all the equilibria for $\mu=0.3$

Realms and tubes

Position Space

- Realms connected by tubes in phase space $\simeq S^{k} \times \mathbb{R}$ - Conley \& McGehee, 1960s, found these locally for planar case, speculated on use for "low energy transfers"

Motion near saddles

Near L_{1} or L_{2}, linearized vector field has eigenvalues

$$
\pm \lambda \text { and } \pm i \omega_{j}, j=2, \ldots, N
$$

\square Under local change of coordinates

$$
H(q, p)=\lambda q_{1} p_{1}+\sum_{i=2}^{N} \frac{\omega_{i}}{2}\left(p_{i}^{2}+q_{i}^{2}\right)
$$

Motion near saddles

\square Equilibrium point is of type saddle \times center $\times \cdots \times$ center ($N-1$ centers)
i.e., rank 1 saddle

the N canonical planes

Motion near saddles

\square For energy h just above saddle pt, $\left(q_{1}, p_{1}\right)=(0,0)$ is normally hyperbolic invariant manifold of bound orbits

$$
\mathcal{M}_{h}=\sum_{i=2}^{N} \frac{\omega_{i}}{2}\left(p_{i}^{2}+q_{i}^{2}\right)=h>0
$$

the N canonical planes

Motion near saddles

\square Note that $\mathcal{M}_{h} \simeq S^{2 N-3}$

- $N=2$, the circle S^{1}, a single periodic orbit
- $N=3$, the 3 -sphere S^{3}, a set of periodic and quasi-periodic orbits

the N canonical planes

Motion near saddles

\square Note that $\mathcal{M}_{h} \simeq S^{2 N-3}$

- $N=2$, the circle S^{1}, a single periodic orbit
- $N=3$, the 3 -sphere S^{3}, a set of periodic and quasi-periodic orbits
\square Four "cylinders" or tubes of asymptotic orbits: stable, unstable manifolds, $W_{ \pm}^{s}\left(\mathcal{M}_{h}\right), W_{ \pm}^{u}\left(\mathcal{M}_{h}\right), \simeq S^{1} \times \mathbb{R}$ for $N=2$

Motion near saddles

- B : bounded orbits (periodic/quasi-periodic): S^{3}
- A : asymptotic orbits to 3 -sphere: $S^{3} \times \mathbb{R}$ (tubes)
- T : transit and NT : non-transit orbits.

Motion near saddles: 3-body problem

- B : bounded orbits (periodic/quasi-periodic): S^{3}
- A : asymptotic orbits to 3 -sphere: $S^{3} \times \mathbb{R}$ (tubes)
- T : transit and NT : non-transit orbits.

Projection to configuration space.

Tube dynamics: inter-realm transport

- Tube dynamics: All motion between realms connected by necks around saddles must occur through the interior of tubes ${ }^{1}$

[^0]
Some remarks on tube dynamics

\square Tubes are general; consequence of rank 1 saddle - e.g., ubiquitous in chemistry
\square Tubes persist

- in presence of additional massive body
- when primary bodies' orbit is eccentric
\square Observed in the solar system (e.g., Oterma)
\square Even on galactic and atomic scales!

Koon, Lo, Marsden, \& Ross [2000], Gómez, Koon, Lo, Marsden, Masdemont, \& Ross [2004], Gabern, Koon, Marsden, \& Ross [2005], Ross \& Marsden [2006], Gawlik, Marsden, Du Toit, Campagnola [2008],Combes, Leon, Meylan [1999], Heggie [2000], Romero-Gómez, et al. [2006,2007,2008]

Tube dynamics

- Motion between Poincaré sections on $\mathcal{M}(E)$
- System reduced to k-map dynamics between the $k U_{i}$

Tube dynamics

- Motion between Poincaré sections on $\mathcal{M}(E)$
- System reduced to k-map dynamics between the $k U_{i}$

Identifying orbits by itinerary

\square Regions of common orbits labeled using itineraries

- by looking at intersections of labeled tubes \rightarrow tube hopping

Itineraries for multiple 3-body systems possible too.

Identifying orbits by itinerary

\square itinerary (X, J, S), same as Oterma
\square search for an initial condition with this itinerary
\square first in 2 d.o.f., then in 3 d.o.f.

Identifying orbits by itinerary - 2 d.o.f.

\square Consider how tubes connect Poincaré sections U_{i}

Identifying orbits by itinerary - 2 d.o.f.

Identifying orbits by itinerary - 2 d.o.f.

T Tile with label (X,[J],S)

\square Denote the intersection $(X,[J]) \bigcap([J], S)$ by $(X,[J], S)$

Identifying orbits by itinerary - 2 d.o.f.

\square Forward and backward numerical integration

Identifying orbits by itinerary - 2 d.o.f.

Identifying orbits by itinerary - 2 d.o.f.

... correspond to smaller pieces of phase space

Identifying orbits by itinerary - 2 d.o.f.

Tube dynamics: theorem

Theorem of global orbit structure

\square says we can construct an orbit with any itinerary, eg ($\ldots, J, X, J, S, J, S, \ldots)$, where X, J and S denote the different realms (symbolic dynamics) ${ }^{2}$
${ }^{2}$ Main theorem of Koon, Lo, Marsden, and Ross [2000] Chaos

Identifying orbits by itinerary - 3 d.o.f.

- Similar for 3 d.o.f.: Invariant manifold tubes $S^{3} \times \mathbb{R}$
- Poincaré section of energy surface
- at $x=$ constant, $(y, \dot{y}, z, \dot{z}) \subset \mathbb{R}^{4}$

Identifying orbits by itinerary - 3 d.o.f.

- Similar for 3 d.o.f.: Invariant manifold tubes $S^{3} \times \mathbb{R}$
- Poincaré section of energy surface
- at $x=$ constant, $(y, \dot{y}, z, \dot{z}) \subset \mathbb{R}^{4}$
- Tube cross-section is a topological 3-sphere S^{3} of radius r
- S^{3} projection: disk \times disk

Determining interior of S^{3}

$\square S^{3}$ projection: disk \times disk

$$
\begin{aligned}
y^{2}+\dot{y}^{2}+z^{2}+\dot{z}^{2} & =r^{2} \\
r_{y}^{2}+r_{z}^{2} & =r^{2}
\end{aligned}
$$

(y, \dot{y}) Plane

(z, \dot{z}) Plane

Determining interior of S^{3}

\square For fixed (z, \dot{z}), projection onto (y, \dot{y}) is a closed curve

$$
\begin{aligned}
y^{2}+\dot{y}^{2} & =r^{2}-\left(z^{2}+\dot{z}^{2}\right) \\
r_{y}^{2} & =r^{2}-\quad r_{z}^{2}
\end{aligned}
$$

(y, \dot{y}) Plane

(z, \dot{z}) Plane

Determining interior of S^{3}

\square For different (z, \dot{z}), a different closed curve in (y, \dot{y})

$$
\begin{aligned}
y^{2}+\dot{y}^{2} & =r^{2}-\left(z^{2}+\dot{z}^{2}\right) \\
r_{y}^{2} & =r^{2}-\quad r_{z}^{2}
\end{aligned}
$$

(y, \dot{y}) Plane

(z, \dot{z}) Plane

Determining interior of S^{3}

\square Cross-section of tube effectively reduced to a two-parameter family of closed curves

$$
y^{2}+\dot{y}^{2}=r^{2}-\left(z^{2}+\dot{z}^{2}\right)
$$

(y, \dot{y}) Plane

(z, \dot{z}) Plane

Determining interior of S^{3}

- Can be demonstrated numerically: $\left\{\operatorname{int}\left(\gamma_{z \dot{z}}\right)\right\}_{(z, \dot{z})}$

- Provides nice way to calculate interior of tube, intersections of tubes, etc.

Intersection of phase volumes

\square Find (X,J,S) orbit via tube intersection

Intersection of phase volumes

\square Find (X,J,S) orbit via tube intersection

All orbits in intersection correspond to transition

$x y$-plane projection

Gómez, Koon, Lo, Marsden, Masdemont, Ross, Nonlinearity [2004]

Other orbits obtained this way

Another example

On the tubes, rather than in the tubes

An $L_{1}-L_{2}$ heteroclinic connection

Transition probabilities

\square Example: Comet transport between outside and inside of Jupiter (i.e., Oterma-like transitions)

Transition probabilities

\square Phase volume ratio gives the relative probability to pass from outside to inside Jupiter's orbit.

Transition probabilities

\square Jupiter family comet transitions: $\mathbf{X} \rightarrow \mathbf{S}, \mathbf{S} \rightarrow \mathbf{X}$
Transition Probability for Jupiter Family Comets

Capture time determined by tube dynamics

\square Temporary capture time profiles are structured

Related systems

\square Results apply to similar problems in chemistry, biomechanics, ship capsize

Tubes leading to capsize

- Ship motion is Hamiltonian,

$$
H=p_{x}^{2} / 2+R^{2} p_{y}^{2} / 4+V(x, y)
$$

Tubes leading to capsize

Tubes leading to capsize

- Wedge of trajectories leading to imminent capsize

- Tubes are a useful paradigm for predicting capsize even in the presence of random forcing, e.g., random waves
- Could inform control schemes to avoid capsize in rough seas

Some other transport activities inspired by Jerry

FTLE for Riemannian manifolds

- We can define the FTLE for Riemannian manifolds ${ }^{3}$

$$
\sigma_{t}^{T}(x)=\frac{1}{|T|} \ln \left\|\mathrm{D} \phi_{t}^{t+T}\right\| \doteq \frac{1}{|T|} \log \left(\max _{\mathrm{y} \neq 0} \frac{\left\|\mathrm{D} \phi_{t}^{t+T}(\mathrm{y})\right\|}{\|\mathrm{y}\|}\right)
$$

with y a small perturbation in the tangent space at x.

${ }^{3}$ Lekien \& Ross [2010] Chaos

Atmospheric flows: Antarctic polar vortex

Atmospheric flows: Antarctic polar vortex

ozone data + LCSs (red $=$ repelling, blue $=$ attracting $)$

Atmospheric flows and lobe dynamics

orange $=$ repelling LCSs , blue $=$ attracting LCS
satellite

Hurricane Andrea, 2007
cf. Sapsis \& Haller [2009], Du Toit \& Marsden [2010], Lekien \& Ross [2010], Tallapragada \& Ross [2011]

Atmospheric flows and lobe dynamics

Hurricane Andrea at one snapshot; LCS shown (orange $=$ repelling, blue $=$ attracting)

Atmospheric flows and lobe dynamics

orange $=$ repelling (stable manifold),\quad blue $=$ attracting (unstable manifold)

Atmospheric flows and lobe dynamics

Atmospheric flows and lobe dynamics

Portions of lobes colored; magenta $=$ outgoing, green $=$ incoming, purple $=$ stays out

Atmospheric flows and lobe dynamics

Portions of lobes colored; magenta $=$ outgoing, green $=$ incoming, purple $=$ stays out

Atmospheric flows and lobe dynamics

Sets behave as lobe dynamics dictates

Coherent sets and set-based definition of FTLE

- FTLE from covariance during 24 hours starting 09:00 1 May 2007

Coherent sets and set-based definition of FTLE

- Coherent sets during 24 hours starting 09:00 1 May 2007

Navigation in an aperiodic setting

- Selectively jumping between large air masses using control
- Moving between mobile subregions of different finite-time itineraries

Biological adaptation

Long range transport of plant pathogen spores

- Might organisms which travel via the atmosphere have adaptations to best take advantage of the "atmospheric superhighway"?

Final words on geometry of transport

\square Invariant manifold and invariant manifold-like structures are related to transport; form template or skeleton
\square In Hamiltonian systems with rank-1 saddles:

- Tube dynamics: the interior of tube manifolds - related to capture, escape, transition, collision - applications to orbital mechanics, ship capsize, ...
\square In the atmosphere:
- Lagrangian coherent structures
- the skeleton of air
- boundaries between air masses
- link with set-oriented and topological methods

The End - Thank you!

Thanks to: Phanindra Tallapragada, Carmine Senatore, Piyush Grover, David Schmale, Daniel Scheeres, Francois Lekien, Mark Stremler

For papers, movies, etc., visit:

 www.shaneross.com
Some Papers:

- Schmale, Ross, Fetters, Tallapragada, Wood-Jones, Dingus [2011] Isolates of Fusarium graminearum collected 40-320 meters above ground level cause Fusarium head blight in wheat and produce trichothecene mycotoxins. Aerobiologia, published online.
- Tallapragada \& Ross [2011] A geometric and probabilistic description of coherent sets. Submitted preprint.
- Lekien \& Ross [2010] The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds. Chaos 20, 017505.
- Marsden \& Ross [2006] New methods in celestial mechanics and mission design. Bulletin of the American Mathematical Society, 43(1), 43.
- Koon, Lo, Marsden, Ross [2000] Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10, 427.

FREE Book

Book available:

Dynamical systems, the three-body problem, and space mission design Koon, Lo, Marsden, Ross

Free download from: www.shaneross.com/books

[^0]: ${ }^{1}$ Koon, Lo, Marsden, Ross [2000,2001,2002], Gómez, Koon, Lo, Marsden, Masdemont, Ross [2004]

