Geometry of phase space transport in dynamical systems

Shane Ross

Engineering Science and Mechanics, Virginia Tech

www.shaneross.com

ICIAM, July 2011

MultiSTEPS: MultiScale Transport in Environmental & Physiological Systems, www.multisteps.esm.vt.edu

The tale of a confused comet

- comet Oterma from 1910 to 1980
- Rapid transition: outside to inside Jupiter's orbit; temporarily captured.

The tale of a confused comet

• Oterma's orbit in rotating frame with special nearby orbits (green)

Natural Pathways for Fuel Efficiency

Natural Pathways for Fuel Efficiency

Orbiting Jupiter's moons

zero fuel trajectory

Fuel-efficient tours of Jupiter's moons

Interplanetary transport network

Natural pathways winding through the solar system

Oceanic transport network

Ocean currents: natural pathways on Earth

Atmospheric transport network

Atmospheric transport network

Transport networks: overview

□ Main objective: geometric description of transport

- insight into phase space mixing and regions of further interest
- efficient control schemes
- Motivating principle: structures guiding transport
 especially systems with symmetry, e.g., Hamiltonian
- celestial mechanics example
- □ geophysical flow example

Interplanetary transport: main ideas

 \Box Break N-body problem into several 3-body problems

- □ Invariant manifolds of unstable bound orbits act as separatrices (codimension 1 surfaces)
- Determine **transport**, e.g., collisions, transitions

3-Body Problem

Restricted 3-body approximation P in field of two massive bodies, m₁ and m₂ x-y frame rotates w.r.t. X-Y inertial frame

3-Body Problem

Equations of motion in rotating frame describe P moving in effective potential plus a coriolis force (goes back to work of Jacobi, Hill, etc)

Effective Potential

Hamiltonian system

 \Box Hamiltonian function (2 d.o.f.) — time-independent

$$H(x, y, p_x, p_y) = \frac{1}{2}((p_x + y)^2 + (p_y - x)^2) + \bar{U}(x, y),$$

where p_x and p_y are the conjugate momenta, and

$$\bar{U}(x,y) = -\frac{1}{2}(x^2 + y^2) - \frac{1-\mu}{r_1} - \frac{\mu}{r_2}$$

where $r_1 \& r_2$ are the distances of P from $m_1 \& m_2$ and

$$\mu = \frac{m_2}{m_1 + m_2} \in (0, 0.5]$$

 \Box For systems of interest, $\mu \thickapprox 10^{-6} \text{-} 10^{-2}$

Motion in energy surface

Energy surface of energy E is codim-1 surface $\mathcal{M}(E) = \{(q, p) \mid H(q, p) = E\}.$

In 2 d.o.f., 3D surfaces foliating the 4D phase space (in 3 d.o.f., 5D energy surfaces)

Realms of possible motion

□ M_µ(E) partitioned into three realms
 e.g., Earth realm = phase space around Earth
 □ Energy E determines their connectivity

Realms of possible motion

Orbits in neck regions between realms

 \Box Orbits exist around L_1 & L_2 ; periodic & quasi-periodic

- Unstable bound orbits: Lyapunov, halo and Lissajous orbits
- their stable/unstable invariant manifolds are tubes, play a key role

The location of all the equilibria for $\mu=0.3$

Realms and tubes

Realms connected by tubes in phase space ≃ S^k × ℝ
 — Conley & McGehee, 1960s, found these locally for planar case, speculated on use for "low energy transfers"

 \Box Near L_1 or L_2 , linearized vector field has eigenvalues $\pm \lambda$ and $\pm i\omega_j$, $j = 2, \ldots, N$

□ Under local change of coordinates

$$H(q, p) = \lambda q_1 p_1 + \sum_{i=2}^{N} \frac{\omega_i}{2} \left(p_i^2 + q_i^2 \right)$$

□ Equilibrium point is of type saddle × center × · · · × center (N - 1 centers)

i.e., rank 1 saddle

the N canonical planes

□ For energy h just above saddle pt, $(q_1, p_1) = (0, 0)$ is normally hyperbolic invariant manifold of bound orbits

$$\mathcal{M}_h = \sum_{i=2}^N \frac{\omega_i}{2} \left(p_i^2 + q_i^2 \right) = h > 0.$$

the N canonical planes

 \Box Note that $\mathcal{M}_h \simeq S^{2N-3}$

- N = 2, the circle S^1 , a single periodic orbit
- N = 3, the 3-sphere S^3 , a set of periodic and quasi-periodic orbits

the N canonical planes

 \Box Note that $\mathcal{M}_h \simeq S^{2N-3}$

• N = 2, the circle S^1 , a single periodic orbit

• N = 3, the 3-sphere S^3 , a set of periodic and quasi-periodic orbits

Four "cylinders" or **tubes** of asymptotic orbits: stable, unstable manifolds, $W^s_{\pm}(\mathcal{M}_h), W^u_{\pm}(\mathcal{M}_h), \simeq S^1 \times \mathbb{R}$ for N = 2

- **B** : **bounded orbits** (periodic/quasi-periodic): S^3
- A : asymptotic orbits to 3-sphere: $S^3 \times \mathbb{R}$ (tubes)
- T : transit and NT : non-transit orbits.

Motion near saddles: 3-body problem

- **B** : **bounded orbits** (periodic/quasi-periodic): S^3
- A : asymptotic orbits to 3-sphere: $S^3 \times \mathbb{R}$ (tubes)
- T : transit and NT : non-transit orbits.

Projection to configuration space.

Tube dynamics: inter-realm transport

 Tube dynamics: All motion between realms connected by necks around saddles must occur through the interior of tubes¹

¹Koon, Lo, Marsden, Ross [2000,2001,2002], Gómez, Koon, Lo, Marsden, Masdemont, Ross [2004]

Some remarks on tube dynamics

- Tubes are general; consequence of rank 1 saddle e.g., ubiquitous in chemistry
- Tubes persist
 - in presence of additional massive body
 - when primary bodies' orbit is eccentric
- Observed in the solar system (e.g., Oterma)
- Even on galactic and atomic scales!

Koon, Lo, Marsden, & Ross [2000], Gómez, Koon, Lo, Marsden, Masdemont, & Ross [2004], Gabern, Koon, Marsden, & Ross [2005], Ross & Marsden [2006], Gawlik, Marsden, Du Toit, Campagnola [2008], Combes, Leon, Meylan [1999], Heggie [2000], Romero-Gómez, et al. [2006,2007,2008]

Tube dynamics

- Motion between Poincaré sections on $\mathcal{M}(E)$
- System reduced to k-map dynamics between the $k U_i$

Tube dynamics

- Motion between Poincaré sections on $\mathcal{M}(E)$
- System reduced to k-map dynamics between the $k U_i$

Identifying orbits by itinerary

Regions of common orbits labeled using itineraries

 \bullet by looking at intersections of labeled tubes \rightarrow tube hopping

Itineraries for multiple 3-body systems possible too.

Identifying orbits by itinerary

itinerary (X, J, S), *same as Oterma*search for an initial condition with this itinerary
first in 2 d.o.f., then in 3 d.o.f.

Identifying orbits by itinerary — 2 d.o.f.

 \Box Consider how tubes connect Poincaré sections U_i

Identifying orbits by itinerary — 2 d.o.f.

Identifying orbits by itinerary — 2 d.o.f. Tile with label (X,[J],S)Denote the intersection $(X, [J]) \cap ([J], S)$ by (X, [J], S)

Identifying orbits by itinerary — 2 d.o.f.

□ Forward and backward numerical integration

Identifying orbits by itinerary — 2 d.o.f.

Longer itineraries...

Identifying orbits by itinerary — 2 d.o.f.

... correspond to smaller pieces of phase space

Identifying orbits by itinerary — 2 d.o.f.

Orbit with (X, J, S, J, X)

Tube dynamics: theorem

Theorem of global orbit structure

Says we can construct an orbit with any **itinerary**, eg $(\ldots, J, X, J, S, J, S, \ldots)$, where X, J and Sdenote the different realms (symbolic dynamics)²

²Main theorem of Koon, Lo, Marsden, and Ross [2000] Chaos

Identifying orbits by itinerary — 3 d.o.f.

- Similar for 3 d.o.f.: Invariant manifold tubes $S^3 \times \mathbb{R}$
- Poincaré section of energy surface
 - \bullet at $x={\rm constant},~(y,\dot{y},z,\dot{z})\subset \mathbb{R}^4$

Identifying orbits by itinerary — 3 d.o.f.

- Similar for 3 d.o.f.: Invariant manifold tubes $S^3 \times \mathbb{R}$
- Poincaré section of energy surface
 - \bullet at $x={\rm constant},~(y,\dot{y},z,\dot{z})\subset \mathbb{R}^4$
- Tube cross-section is a topological **3-sphere** S^3 of radius r
 - $\bullet~S^3$ projection: ${\rm disk}~\times~{\rm disk}$

$\Box S^3$ projection: **disk** \times **disk**

 \Box For fixed (z, \dot{z}) , projection onto (y, \dot{y}) is a **closed curve** $y^2 + \dot{y}^2 = r^2 - (z^2 + \dot{z}^2)$ $r_{u}^{2} = r^{2} - r_{z}^{2}$ (y, \dot{y}) Plane (z, \dot{z}) Plane

 \Box For different (z, \dot{z}) , a different **closed curve** in (y, \dot{y})

 $y^2 + \dot{y}^2 = r^2 - (z^2 + \dot{z}^2)$

Cross-section of tube effectively reduced to a **two-parameter family of closed curves**

$$y^2 + \dot{y}^2 = r^2 - (z^2 + \dot{z}^2)$$

• Can be demonstrated numerically: $\{int(\gamma_{z\dot{z}})\}_{(z,\dot{z})}$

 Provides nice way to calculate interior of tube, intersections of tubes, etc.

Intersection of phase volumes

□ Find (X,J,S) orbit via tube intersection

Intersection of phase volumes

□ Find (X,J,S) orbit via tube intersection

All orbits in intersection correspond to transition

Other orbits obtained this way

Another example

On the tubes, rather than in the tubes

An L_1 - L_2 heteroclinic connection

Transition probabilities

Example: Comet transport between outside and inside of Jupiter (i.e., Oterma-like transitions)

Transition probabilities

Poincaré Section

Phase volume ratio gives the relative probability to pass from outside to inside Jupiter's orbit.

Transition probabilities

 \Box Jupiter family comet transitions: $X \rightarrow S, S \rightarrow X$

Capture time determined by tube dynamics

Temporary capture time profiles are structured

Related systems

Results apply to similar problems in chemistry, biomechanics, ship capsize

Tubes leading to capsize

Tubes leading to capsize

Tubes leading to capsize

• Wedge of trajectories leading to imminent capsize

- Tubes are a useful paradigm for predicting capsize even in the presence of random forcing, e.g., random waves
- Could inform control schemes to avoid capsize in rough seas

Some other transport activities inspired by Jerry

FTLE for Riemannian manifolds

ullet We can define the FTLE for Riemannian manifolds 3

$$\sigma_t^T(x) = \frac{1}{|T|} \ln \left\| \mathbf{D}\phi_t^{t+T} \right\| \doteq \frac{1}{|T|} \log \left(\max_{\mathbf{y} \neq \mathbf{0}} \frac{\left\| \mathbf{D}\phi_t^{t+T}(\mathbf{y}) \right\|}{\|\mathbf{y}\|} \right)$$

with y a small perturbation in the tangent space at x.

Atmospheric flows: Antarctic polar vortex

Atmospheric flows: Antarctic polar vortex

ozone data + LCSs (red = repelling, blue = attracting)

 $orange = repelling \ LCSs, \ blue = attracting \ LCSs$

satellite

Hurricane Andrea, 2007

cf. Sapsis & Haller [2009], Du Toit & Marsden [2010], Lekien & Ross [2010], Tallapragada & Ross [2011]

Hurricane Andrea at one snapshot; LCS shown (orange = repelling, blue = attracting)

orange = repelling (stable manifold), blue = attracting (unstable manifold)

orange = repelling (stable manifold), blu

blue = attracting (unstable manifold)

Portions of lobes colored; magenta = outgoing, green = incoming, purple = stays out

Portions of lobes colored; magenta = outgoing, green = incoming, purple = stays out

Sets behave as lobe dynamics dictates

Coherent sets and set-based definition of FTLE

• FTLE from covariance during 24 hours starting 09:00 1 May 2007
Coherent sets and set-based definition of FTLE

• Coherent sets during 24 hours starting 09:00 1 May 2007

Navigation in an aperiodic setting

- Selectively jumping between large air masses using control
- Moving between mobile subregions of different finite-time itineraries

Biological adaptation

Long range transport of plant pathogen spores

 Might organisms which travel via the atmosphere have adaptations to best take advantage of the "atmospheric superhighway"?

Final words on geometry of transport

Invariant manifold and invariant manifold-like structures are related to transport; form template or skeleton

□ In Hamiltonian systems with rank-1 saddles:

Tube dynamics: the interior of tube manifolds

 related to capture, escape, transition, collision
 applications to orbital mechanics, ship capsize, ...

□ In the atmosphere:

- Lagrangian coherent structures
 - the skeleton of air
 - boundaries between air masses
 - link with set-oriented and topological methods

The End — Thank you!

Thanks to: Phanindra Tallapragada, Carmine Senatore, Piyush Grover, David Schmale, Daniel Scheeres, Francois Lekien, Mark Stremler

For papers, movies, etc., visit: www.shaneross.com

Some Papers:

- Schmale, Ross, Fetters, Tallapragada, Wood-Jones, Dingus [2011] Isolates of Fusarium graminearum collected 40-320 meters above ground level cause Fusarium head blight in wheat and produce trichothecene mycotoxins. Aerobiologia, published online.
- Tallapragada & Ross [2011] A geometric and probabilistic description of coherent sets. Submitted preprint.
- Lekien & Ross [2010] The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds. Chaos 20, 017505.
- Marsden & Ross [2006] New methods in celestial mechanics and mission design. Bulletin of the American Mathematical Society, 43(1), 43.
- Koon, Lo, Marsden, Ross [2000] Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10, 427.

FREE Book

Book available:

Dynamical systems, the three-body problem, and space mission design Koon, Lo, Marsden, Ross

Free download from: www.shaneross.com/books

DYNAMICAL SYSTEMS, THE THREE-BODY PROBLEM, AND SPACE MISSION DESIGN

ang Sang Koon artin W. Lo rrold E. Marsden ane D. Ross California Institute of Technology Jet Propulsion Laboratory California Institute of Technology inia Polytechnic Institute and State University