Geometric and probabilistic descriptions of chaotic phase space transport

Shane Ross

Dept. of Engineering Science and Mechanics, Virginia Tech www.shaneross.com

In collaboration with P. Grover, C. Senatore, P. Tallapragada, P. Kumar, S. Naik, M. Gheisarieha, A. BozorgMagham, D. Schmale, F. Lekien, M. Stremler

North Carolina State University, Differential Equations Seminar
Department of Mathematics, November 9, 2011

MultisTEPS: Multiscale Transport in Virginia
Environmental \& Physiological Systems,
www.multisteps.esm.vt.edu

Motivation: application to real data

- Many systems defined from data or large-scale simulations
- experimental measurements, observations
- e.g., from fluid dynamics, biology, social sciences
- Data-based, aperiodic, finite-time, finite resolution — in general, no fixed points, periodic orbits, or other invariant sets (or their stable and unstable manifolds) to organize phase space

Motivation: application to real data

- Perhaps can find appropriate analogs to the objects; adapt previous results to this setting
- Try some numerical explorations; see what merit furthers study

Chaotic phase space transport via lobe dynamics
\square Suppose our dynamical system is a discrete map ${ }^{1}$

$$
f: \mathcal{M} \longrightarrow \mathcal{M}
$$

e.g., $f=\phi_{t}^{t+T}$, flow map of time-periodic vector field and \mathcal{M} is a differentiable, orientable, two-dimensional manifold e.g., \mathbb{R}^{2}, S^{2}
\square To understand the transport of points under the f, consider invariant manifolds of unstable fixed points

- Let $p_{i}, i=1, \ldots, N_{p}$, denote saddle-type hyperbolic fixed points of f.

Partition phase space into regions

\square Natural way to partition phase space

- Pieces of $W^{u}\left(p_{i}\right)$ and $W^{s}\left(p_{i}\right)$ partition \mathcal{M}.

Unstable and stable manifolds in red and green, resp.

Partition phase space into regions

- Intersection of unstable and stable manifolds define boundaries.

Partition phase space into regions

- These boundaries divide the phase space into regions

Label mobile subregions: 'atoms' of transport

- Can label mobile subregions based on their past and future whereabouts under one iterate of the map, e.g., $\left(\ldots, R_{4}, R_{4}, R_{1},\left[R_{1}\right], R_{2}, \ldots\right)$

Lobe dynamics: transport across a boundary

$\square W^{u}\left[f^{-1}(q), q\right] \bigcup W^{s}\left[f^{-1}(q), q\right]$ forms boundary of two lobes; one in R_{1}, labeled $L_{1,2}(1)$, or equivalently $\left(\left[R_{1}\right], R_{2}\right)$, where $f\left(\left(\left[R_{1}\right], R_{2}\right)\right)=\left(R_{1},\left[R_{2}\right]\right)$, etc. for $L_{2,1}(1)$

Lobe dynamics: transport across a boundary

\square Under one iteration of f, only points in $L_{1,2}(1)$ can move from R_{1} into R_{2} by crossing their boundary, etc.
\square The two lobes $L_{1,2}(1)$ and $L_{2,1}(1)$ are called a turnstile.

Lobe dynamics: transport across a boundary
\square Essence of lobe dynamics: dynamics associated with crossing a boundary is reduced to the dynamics of turnstile lobes associated with the boundary.

Identifying atoms of transport by itinerary

\square In a complicated system, can still identify manifolds ...

Unstable and stable manifolds in red and green, resp.

Identifying atoms of transport by itinerary

$\square \ldots$ and lobes

Significant amount of fine, filamentary structure.

Identifying atoms of transport by itinerary

\square e.g., with three regions $\left\{R_{1}, R_{2}, R_{3}\right\}$, label lobe intersections accordingly.

- Denote the intersection $\left(R_{3},\left[R_{2}\right]\right) \bigcap\left(\left[R_{2}\right], R_{1}\right)$ by $\left(R_{3},\left[R_{2}\right], R_{1}\right)$

Identifying atoms of transport by itinerary

Longer itineraries...

Identifying atoms of transport by itinerary

... correspond to smaller pieces of phase space; horseshoe dynamics, etc

Lobe dynamics intimately related to transport

$n=0$

$n=3$

$n=1$

$n=5$

$n=2$

$n=7$

Lobe Dynamics: example

- Restricted 3-body problem: chaotic sea has unstable fixed points.

Compute a boundary

Transport btwn Two Regions

- The evolution of a lobe of species S_{1} into R_{2}

Dellnitz, Junge, Lo, Marsden, Padberg, Preis, Ross, Thiere [2005] Physical Review Letters

Transport btwn Two Regions

Species Distribution: Species $\mathrm{S}_{\mathbf{1}}$ in Region $\mathrm{R}_{\mathbf{2}}$

Lobe dynamics: fluid example

\square Fluid example: time-periodic Stokes flow
(a)

(b)

streamlines
tracer blob
Lid-driven cavity flow

- Model for microfluidic mixer
- System has parameter τ_{f}, which we treat as a bifurcation parameter — critical point $\tau_{f}^{*}=1$; above and next few slides show $\tau_{f}>1$

Lobe dynamics: fluid example

\square Structure associated with saddles of Poincaré map

some invariant manifolds of saddles

Lobe dynamics: fluid example

\square Can consider transport via lobe dynamics

Stable/unstable manifolds and lobes in fluids

material blob at $t=0$

Stable/unstable manifolds and lobes in fluids

material blob at $t=5$

Stable/unstable manifolds and lobes in fluids

some invariant manifolds of saddles

Stable/unstable manifolds and lobes in fluids

material blob at $t=10$

Stable/unstable manifolds and lobes in fluids

material blob at $t=15$

Stable/unstable manifolds and lobes in fluids

material blob and manifolds

Stable/unstable manifolds and lobes in fluids

material blob at $t=20$

Stable/unstable manifolds and lobes in fluids

material blob at $t=25$

Stable/unstable manifolds and lobes in fluids

- Saddle manifolds and lobe dynamics provide template for motion

Stable/unstable manifolds and lobes in fluids

\square Concentration variance; a measure of homogenization

- Homogenization has two exponential rates: slower one related to lobes
- Fast rate due to braiding of 'ghost rods'

Stirring fluids with solid rods

turbulent mixing spoon in coffee
laminar mixing
3 'braiding' rods in glycerin

Topological chaos through braiding of stirrers

\square Topological chaos is 'built in' the flow due to the topology of boundary motions
$R_{N}:$ 2D fluid region with N stirring 'rods'

- stirrers move on periodic orbits
- stirrers = solid objects or fluid particles
- stirrer motions generate diffeomorphism

$$
f: R_{N} \rightarrow R_{N}
$$

- stirrer trajectories generate braids in 2+ 1 dimensional space-time

Thurston-Nielsen classification theorem

- Thurston (1988) Bull. Am. Math. Soc.
- A stirrer motion f is isotopic to a stirrer motion g of one of three types (i) finite order (f.o.): the nth iterate of g is the identity (ii) pseudoAnosov (pA): g has dense orbits, (iii) reducible: g contains both f.o. and pA regions
- h_{TN} computed from 'braid word', e.g., $\sigma_{-1} \sigma_{2}$ where $\lambda \geq \lambda_{\mathrm{TN}}$

Topological chaos in a viscous fluid experiment

finite order

Identifying 'ghost rods': periodic points

$$
\text { tracer blob for } \tau_{f}>1
$$

- For $\tau_{f}>1$, groups of elliptic and saddle periodic points of period 3
- streamlines around groups resemble fluid motion around a solid rod \Rightarrow
- At $\tau_{f}=1$, points merge into parabolic points
- Below $\tau_{f}<1$, periodic points vanish

Identifying 'ghost rods': periodic points

Poincaré section for $\tau_{f}>1$

- For $\tau_{f}>1$, groups of elliptic and saddle periodic points of period 3
- streamlines around groups resemble fluid motion around a solid rod \Rightarrow
- At $\tau_{f}=1$, points merge into parabolic points
- Below $\tau_{f}<1$, periodic points vanish

Identifying 'ghost rods': periodic points

- Periodic points of period $3 \Rightarrow$ act as 'ghost rods'
- Their braid has $h_{\mathrm{TN}}=0.96242$ from TNCT
- Actual $h_{\text {flow }} \approx 0.964$
- $\Rightarrow h_{\mathrm{TN}}$ is an excellent lower bound

Topological entropy continuity across critical point

\square Consider $\tau_{f}<1$

Identifying 'ghost rods'?

Poincaré section for $\tau_{f}<1 \Rightarrow$ no obvious structure!

- Note the absence of any elliptical islands
- No periodic orbits of low period were found
- Is the phase space featureless?

Almost-invariant set (AIS) approach

- Take probabilistic point of view
- Partition phase space into loosely coupled regions

Almost-invariant sets \approx 'leaky' regions with a long residence time ${ }^{2}$

3-body problem phase space is divided into several invariant and almost-invariant sets.

[^0]
Almost-invariant set (AIS) approach

- Create box partition of phase space $\mathcal{B}=\left\{B_{1}, \ldots B_{q}\right\}$, with q large
- Consider a q-by- q transition (Ulam) matrix, P, for our dynamical system, where

$$
P_{i j}=\frac{m\left(B_{i} \cap f^{-1}\left(B_{j}\right)\right)}{m\left(B_{i}\right)}
$$

the transition probability from B_{i} to B_{j} using, e.g., $f=\phi_{t}^{t+T}$

- P approximates our dynamical system via a finite state Markov chain.

Almost-invariant set (AIS) approach

- A set B is called almost invariant over the interval $[t, t+T]$ if

$$
\rho(B)=\frac{m\left(B \cap \phi^{-1}(B)\right)}{m(B)} \approx 1
$$

- Can maximize value of ρ over all possible combinations of sets $B \in \mathcal{B}$.
- In practice, AIS or relatedly, almost-cyclic sets (ACS), identified via eigenvectors (of eigenvalues with $|\lambda| \approx 1$) of P or graph-partitioning
- Appropriate for non-autonomous, aperiodic, finite-time settings

Identifying 'ghost rods': almost-cyclic sets

- Return to $\tau_{f}>1$ case, where periodic points and manifolds exist
- Agreement between AIS boundaries and manifolds of periodic points
- Known previously ${ }^{3}$ and applies to more general objects than periodic points, i.e. normally hyperbolic invariant manifolds (NHIMs)

[^1]
Identifying 'ghost rods': almost-cyclic sets

- Return to $\tau_{f}>1$ case, where periodic points and manifolds exist
- Agreement between AIS boundaries and manifolds of periodic points
- Known previously ${ }^{4}$ and applies to more general objects than periodic points, i.e. normally hyperbolic invariant manifolds (NHIMs)

[^2]
Identifying 'ghost rods': almost-cyclic sets

Poincaré section for $\tau_{f}<1 \Rightarrow$ no obvious structure!

- Return to $\tau_{f}<1$ case, where no periodic orbits of low period known
- Is the phase space featureless?
- Consider transition matrix $P_{t}^{t+\tau_{f}}$ induced by Poincaré map $\phi_{t}^{t+\tau_{f}}$

Identifying 'ghost rods': almost-cyclic sets

Top eigenvectors for $\tau_{f}=0.99$ reveal hierarchy of phase space structures

ν_{3}

ν_{5}

ν_{6}

Identifying 'ghost rods': almost-cyclic sets

The zero contour (black) is the boundary between the two almost-invariant sets.

- Three-component AIS made of 3 almost-cyclic sets (ACSs) of period 3
- ACS effectively replace compact region bounded by saddle manifolds
- Also: we see a dynamical remnant of the global 'stable and unstable manifolds' of the saddle points, despite no saddle points

Identifying 'ghost rods': almost-cyclic sets

Almost-cyclic sets stirring the surrounding fluid like 'ghost rods'

- works even when periodic orbits are absent!

Movie shown is second eigenvector for $P_{t}^{t+\tau_{f}}$ for $t \in\left[0, \tau_{f}\right)$

Identifying 'ghost rods': almost-cyclic sets

Braid of ACSs gives lower bound of entropy via Thurston-Nielsen - One only needs approximately cyclic blobs of fluid

- Even though the theorems require exactly periodic points!
- Stremler, Ross, Grover, Kumar [2011] Phys. Rev. Lett.

Topological entropy vs. bifurcation parameter

- h_{TN} shown for ACS braid on 3 strands

Eigenvalues/eigenvectors vs. bifurcation parameter

Movie shows change in eigenvector along branch marked with '_ם-' above (a to f),
as τ_{f} decreases \Rightarrow

Bifurcation of ACSs

For example, braid on 13 strands for $\tau_{f}=0.92$
Movie shown is second eigenvector for $P_{t}^{t+\tau_{f}}$ for $t \in\left[0, \tau_{f}\right)$
Thurson-Nielsen for this braid provides lower bound on topological entropy

Sequence of ACS braids bounds entropy

For various braids of ACSs, the calculated entropy is given, bounding from below the true topological entropy over the range where the braid exists

Chaotic transport: aperiodic, finite-time setting

- Data-driven, finite-time, aperiodic setting - e.g., non-autonomous ODEs for fluid flow
- How do we get at transport?
- Recall the flow, $x \mapsto \phi_{t}^{t+T}(x)$, where $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

Identify regions of high sensitivity of initial conditions

- Small initial perturbations $\delta x(t)$ grow like

$$
\begin{aligned}
\delta x(t+T) & =\phi_{t}^{t+T}(x+\delta x(t))-\phi_{t}^{t+T}(x) \\
& =\frac{d \phi_{t}^{t+T}(x)}{d x} \delta x(t)+O\left(\|\delta x(t)\|^{2}\right)
\end{aligned}
$$

Identify regions of high sensitivity of initial conditions

- Small initial perturbations $\delta x(t)$ grow like

$$
\begin{aligned}
\delta x(t+T) & =\phi_{t}^{t+T}(x+\delta x(t))-\phi_{t}^{t+T}(x) \\
& =\frac{d \phi_{t}^{t+T}(x)}{d x} \delta x(t)+O\left(\|\delta x(t)\|^{2}\right)
\end{aligned}
$$

Invariant manifold analogs: FTLE-LCS approach

- The finite-time Lyapunov exponent (FTLE),

$$
\sigma_{t}^{T}(x)=\frac{1}{|T|} \log \left\|\frac{d \phi_{t}^{t+T}(x)}{d x}\right\|
$$

measures the maximum stretching rate over the interval T of trajectories starting near the point x at time t

- Ridges of σ_{t}^{T} are candidate hyperbolic codim-1 surfaces; finite-time analogs of stable/unstable manifolds; 'Lagrangian coherent structures'5

[^3]
Invariant manifold analogs: FTLE-LCS approach

Autonomous double-gyre flow

Invariant manifold analogs: FTLE-LCS approach

Invariant manifold analogs: FTLE-LCS approach

Invariant manifolds

LCS

Time-periodic oscillating vortex pair flow

Invariant manifold analogs: FTLE-LCS approach

- We can define the FTLE for Riemannian manifolds ${ }^{3}$

$$
\sigma_{t}^{T}(x)=\frac{1}{|T|} \ln \left\|\mathrm{D} \phi_{t}^{t+T}\right\| \doteq \frac{1}{|T|} \log \left(\max _{\mathrm{y} \neq 0} \frac{\left\|\mathrm{D} \phi_{t}^{t+T}(\mathrm{y})\right\|}{\|\mathrm{y}\|}\right)
$$

with y a small perturbation in the tangent space at x.

Transport barriers on Riemannian manifolds

- Ridges correspond to dynamical barriers ${ }^{3}$ or Lagrangian coherent structures (LCS): repelling surfaces for $T>0$, attracting for $T<0$

cylinder

Moebius strip
Each frame has a different initial time t

[^4]
Atmospheric flows: Antarctic polar vortex

Atmospheric flows: Antarctic polar vortex

ozone data + LCSs (red $=$ repelling, blue $=$ attracting)

Atmospheric flows: Antarctic polar vortex

air masses on either side of a repelling LCS

Atmospheric flows: continental U.S.

LCSs: orange $=$ repelling, blue $=$ attracting

Atmospheric flows and lobe dynamics

orange $=$ repelling LCSs , blue $=$ attracting LCS
satellite

Andrea, first storm of 2007 hurricane season
cf. Sapsis \& Haller [2009], Du Toit \& Marsden [2010], Lekien \& Ross [2010], Ross \& Tallapragada [2011]

Atmospheric flows and lobe dynamics

Andrea at one snapshot; LCS shown (orange $=$ repelling, blue $=$ attracting)

Atmospheric flows and lobe dynamics

orange $=$ repelling (stable manifold),\quad blue $=$ attracting (unstable manifold)

Atmospheric flows and lobe dynamics

orange $=$ repelling (stable manifold),\quad blue $=$ attracting (unstable manifold)

Atmospheric flows and lobe dynamics

Portions of lobes colored; magenta $=$ outgoing, green $=$ incoming, purple $=$ stays out

Atmospheric flows and lobe dynamics

Portions of lobes colored; magenta $=$ outgoing, green $=$ incoming, purple $=$ stays out

Atmospheric flows and lobe dynamics

Sets behave as lobe dynamics dictates

Atmospheric transport network relevant for aeroecology

Skeleton of large-scale horizontal transport
relevant for large-scale
spatiotemporal patterns
of important biota
e.g., plant pathogens

2D curtain-like structures bounding air masses

2D curtain-like structures bounding air masses

Pathogen transport: filament bounded by LCS

(a)

(b)

(c)

Pathogen transport: filament bounded by LCS

(a)

(d)

(b)

(e)

15:00 UTC 1 May 2007

(c)

(f)

18:00 UTC 1 May 2007

Coherent sets and set-based definition of FTLE

- Consider, e.g., a flow ϕ_{t}^{t+T} in $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$.
- Treat the evolution of set $B \subset \mathbb{R}^{2}$ as evolution of two random variables X_{1} and X_{2} defined by probability density function $f\left(x_{1}, x_{2}\right)$, initially uniform on $B, f=\frac{1}{\mu(B)} \mathcal{X}_{B}$, with \mathcal{X}_{B} the characteristic function of B.
- Under the action of the flow ϕ_{t}^{t+T}, f is mapped to $P f$ where P is the associated Perron-Frobenius operator.
- Let $I(f)$ be the covariance of f and $I(P f)$ the covariance of $P f$.

Deformation of a disk under the flow during $[t, t+T]$

Coherent sets and set-based definition of FTLE

- Definition. The covariance-based FTLE of B is

$$
\sigma_{I}(B, t, T)=\frac{1}{|T|} \log \left(\frac{\sqrt{\lambda_{\max }(I(P f))}}{\sqrt{\lambda_{\max }(I(f))}}\right)
$$

- Reduces to usual definition of FTLE in the limit that the linearization approximation (i.e., line-stretching method) is valid

Deformation of a disk under the flow during $[t, t+T]$

Coherent sets and set-based definition of FTLE

- The coherence of a set B during $[t, t+T]$ is $\sigma_{I}(B, t, T)$.
- A set B is almost-coherent during $[t, t+T]$ if $\sigma_{I}(B, t, T) \approx 0$.
- Captures the essential feature of a coherent set: it does not mix or spread significantly in the domain.
- This definition also can identify non-mixing translating sets.

Coherent sets and set-based definition of FTLE

- The coherence of a set B during $[t, t+T]$ is $\sigma_{I}(B, t, T)$.
- A set B is almost-coherent during $[t, t+T]$ if $\sigma_{I}(B, t, T) \approx 0$.
- Captures the essential feature of a coherent set: it does not mix or spread significantly in the domain.
- This definition also can identify non-mixing translating sets.
- Values of $\sigma_{I}(B, t, T)$ determine the family of sets of various degrees of coherence.
- Need to set a heuristic threshold on the value of $\sigma_{I}(B, t, T)$ to determine coherent sets.
- Notice, coherent sets will be separated by ridges of high FTLE, i.e., LCS

Coherent sets in lid-driven cavity flow

FTLE from line-stretching (conventional) during $\left[0, \tau_{f}\right]$

Coherent sets in lid-driven cavity flow

FTLE from covariance-based approach during $\left[0, \tau_{f}\right]$

Coherent sets in lid-driven cavity flow

Sets of coherences $\sigma_{I}\left(0, \tau_{f}\right)<0.06$

Coherent sets in lid-driven cavity flow

Compare coherent set with AIS from second eigenvector of P

Coherent sets in lid-driven cavity flow

Compare coherent sets with non-coherent set (gray)

Coherent sets in lid-driven cavity flow

1

Coherent sets in the atmosphere

Coherent sets in the atmosphere

- FTLE from covariance during 24 hours starting 09:00 1 May 2007

Coherent sets in the atmosphere

- Coherent sets during 24 hours starting 09:00 1 May 2007

Optimal navigation in an aperiodic setting?

- Selectively 'jumping' between coherent air masses using control
- Moving between mobile subregions of different finite-time itineraries

Optimal navigation in an aperiodic setting?

- Selectively 'jumping' between coherent air masses using control
- Moving between mobile subregions of different finite-time itineraries

Chaotic transport in higher dimensional systems

\square e.g., Hamiltonian systems with multiple potential wells.
\square What structures guide transport between potential wells?

- e.g., restricted three-body problem

$$
H=\frac{1}{2}\left(\left(p_{x}+y\right)^{2}+\left(p_{y}-x\right)^{2}\right)+\bar{U}(x, y),
$$

where

$$
\bar{U}(x, y)=-\frac{1}{2}\left(x^{2}+y^{2}\right)-\frac{1-\mu}{r_{1}}-\frac{\mu}{r_{2}}
$$

Motion in energy surface

\square Energy surface of energy E is codim-1 surface

$$
\mathcal{M}(E)=\{(\mathrm{q}, \mathrm{p}) \mid H(\mathrm{q}, \mathrm{p})=E\} .
$$

\square e.g., in 2 d.o.f., 3D surfaces foliating 4D phase space

Realms of possible motion

$\square \mathcal{M}(E)$ partitioned into three realms e.g., Earth realm $=$ phase space around Earth
\square Energy E determines their connectivity

Realms of possible motion

Case 1:E<E1

Case 2 : $E_{1}<E<E_{2}$

Case 3: $E_{2}<E<E_{3}$

Case 4 : $E_{3}<E<E_{4}$

Case $5: E>E_{4}$

Motion near saddles

\square Near rank 1 saddles in N degree of freedom system, linearized vector field eigenvalues are

$$
\pm \lambda \text { and } \pm i \omega_{j}, j=2, \ldots, N
$$

\square Under local change of coordinates

$$
H(q, p)=\lambda q_{1} p_{1}+\sum_{i=2}^{N} \frac{\omega_{i}}{2}\left(p_{i}^{2}+q_{i}^{2}\right)
$$

to lowest order

Motion near saddles

\square Equilibrium point is of type saddle \times center $\times \cdots \times$ center ($N-1$ centers)

the N canonical planes

Motion near saddles

\square For energy h just above saddle pt, $\left(q_{1}, p_{1}\right)=(0,0)$ is normally hyperbolic invariant manifold of bound orbits

$$
\mathcal{M}_{h}=\sum_{i=2}^{N} \frac{\omega_{i}}{2}\left(p_{i}^{2}+q_{i}^{2}\right)=h>0
$$

the N canonical planes

Motion near saddles

\square Note that $\mathcal{M}_{h} \simeq S^{2 N-3}$

- $N=2$, the circle S^{1}, a single periodic orbit
- $N=3$, the 3 -sphere S^{3}, a set of periodic and quasi-periodic orbits

the N canonical planes

Motion near saddles

\square Note that $\mathcal{M}_{h} \simeq S^{2 N-3}$

- $N=2$, the circle S^{1}, a single periodic orbit
- $N=3$, the 3 -sphere S^{3}, a set of periodic and quasi-periodic orbits
\square Four "cylinders" or tubes of asymptotic orbits: stable, unstable manifolds, $W_{ \pm}^{s}\left(\mathcal{M}_{h}\right), W_{ \pm}^{u}\left(\mathcal{M}_{h}\right), \simeq S^{1} \times \mathbb{R}$ for $N=2$

Motion near saddles: 2 d.o.f.

- B : bounded orbits (periodic/quasi-periodic): S^{1}
- A : asymptotic orbits to 1 -sphere: $S^{1} \times \mathbb{R}$ (tubes)
- T : transit and NT : non-transit orbits.

Tube dynamics: inter-realm transport

- Tube dynamics: All motion between adjacent realms connected by necks around saddles must occur through the interior of tubes ${ }^{6}$

${ }^{6}$ Koon, Lo, Marsden, Ross [2000,2001,2002], Gómez, Koon, Lo, Marsden, Masdemont, Ross [2004]

Related systems

- Much work in celestial mechanics
- Results apply to problems in chemistry, biomechanics, ship capsize

Tubes leading to capsize

- Ship motion is Hamiltonian,

$$
H=p_{x}^{2} / 2+R^{2} p_{y}^{2} / 4+V(x, y)
$$

Tubes leading to capsize

Tubes leading to capsize

- Wedge of trajectories leading to imminent capsize

- Tubes are a useful paradigm for predicting capsize even in the presence of random forcing, e.g., random waves
- Could inform control schemes to avoid capsize in rough seas

Final words on chaotic transport

\square What are robust descriptions of transport which work in data-driven aperiodic, finite-time settings?

- Possibilities: finite-time lobe dynamics / symbolic dynamics may work - finite-time analogs of homoclinic and heteroclinic tangles
- Probabilistic, geometric, and topological methods
— invariant sets, almost-invariant sets, almost-cyclic sets, coherent sets, stable and unstable manifolds, Thurston-Nielsen classification, FTLE, LCS
- Many links between these notions - e.g., LCS locate analogs of stable and unstable manifolds
- boundaries between coherent sets are naturally LCS
- periodic points \Rightarrow almost-cyclic sets
— their 'stable/unstable invariant manifolds' \Rightarrow ???

The End

For papers, movies, etc., visit: www.shaneross.com

Main Papers:

- Stremler, Ross, Grover, Kumar [2011] Topological chaos and periodic braiding of almost-cyclic sets. Physical Review Letters 106, 114101.
- Tallapragada, Ross, Schmale [2011] Lagrangian coherent structures are associated with fluctuations in airborne microbial populations. Chaos 21, 033122.
- Lekien \& Ross [2010] The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds. Chaos 20, 017505.
- Senatore \& Ross [2011] Detection and characterization of transport barriers in complex flows via ridge extraction of the finite time Lyapunov exponent field, International Journal for Numerical Methods in Engineering 86, 1163.
- Grover, Ross, Stremler, Kumar [2011] Topological chaos, braiding and breakup of almost-invariant sets. Preprint.
- Tallapragada \& Ross [2011] A geometric and probabilistic description of coherent sets. Preprint.

[^0]: ${ }^{2}$ Dellnitz, Junge, Koon, Lekien, Lo, Marsden, Padberg, Preis, Ross, Thiere [2005] Int. J. Bif. Chaos

[^1]: ${ }^{3}$ Dellnitz, Junge, Lo, Marsden, Padberg, Preis, Ross, Thiere [2005] Phys. Rev. Lett.; Dellnitz, Junge, Koon, Lekien, Lo, Marsden, Padberg, Preis, Ross, Thiere [2005] Int. J. Bif. Chaos

[^2]: ${ }^{4}$ Dellnitz, Junge, Lo, Marsden, Padberg, Preis, Ross, Thiere [2005] Phys. Rev. Lett.; Dellnitz, Junge, Koon, Lekien, Lo, Marsden, Padberg, Preis, Ross, Thiere [2005] Int. J. Bif. Chaos

[^3]: ${ }^{5}$ cf. Bowman, 1999; Haller \& Yuan, 2000; Haller, 2001; Shadden, Lekien, Marsden, 2005

[^4]: ${ }^{3}$ Lekien \& Ross [2010] Chaos

