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Modeling the atmosphere

Hurricane Andrew
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Atmosphere: Antarctic polar vortex
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Atmosphere: Antarctic polar vortex
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Atmosphere: continental U.S.

iv



Periodic velocity field

• If M= fluid domain, the flow map,

φ
t+T
t

: M −→M,

takes points x �→ φ
t+T
t

(x) to their location after time T

x
φ
t0      

(x)
.

.

t0+T
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Periodic velocity field

� Suppose our velocity field is periodic with period T and
we consider the flow map f = φ

t+T
t over one period

� To understand the transport of points under the map f ,
consider invariant manifolds of saddle fixed points

� Let pi, i = 1, ..., Np, denote a collection of saddle-type
hyperbolic fixed points for f .
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Partition phase space into coherent regions

� Natural way to partition phase space
• Pieces of Wu

(pi) and Ws
(pi) partition M.

p2
p3

p1

Unstable and stable manifolds in red and green, resp.

vii



Partition phase space into coherent regions

• Intersection of unstable and stable manifolds define boundaries.

q2

q1
q4

q5

q6

q3

p2
p3

p1
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Partition phase space into coherent regions

• These boundaries divide the phase space into coherent regions.

R1

R5

R4

R3

R2

q2

q1
q4

q5

q6

q3

p2
p3

p1
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Label mobile subregions: ‘atoms’ of transport

• Can label mobile subregions based on their past and future whereabouts
under one iterate of the map, e.g., (. . . , R4, R4, R1, [R1], R2, . . .)

R1

R5

R4

R3

R2

q2

q1
q4

q5

q6

q3

p2
p3

p1
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Lobe dynamics: transport across a boundary

� U [f−1
(q), q]

�
S[f−1

(q), q] forms boundary of two lobes;
one in R1, labeled L1,2(1), or equivalently ([R1], R2),
where f (([R1], R2)) = (R1, [R2]), etc. for L2,1(1)

R1

R2 q

pi pj
f -1(q)
L2,1(1)

L1,2(1)
xi



Lobe dynamics: transport across a boundary

� Under one iteration of f , only points in L1,2(1) can
move from R1 into R2 by crossing B, etc.

� The two lobes L1,2(1) and L2,1(1) are called a turnstile.

R1

R2 q

pi pj
f -1(q)
L2,1(1)

L1,2(1)

f (L1,2(1))

f (L2,1(1))
xii



Lobe dynamics: transport across a boundary

� Essence of lobe dynamics: dynamics associated with

crossing a boundary is reduced to the dynamics

of turnstile lobes associated with the boundary.

R1

R2 q

pi pj
f -1(q)
L2,1(1)

L1,2(1)

f (L1,2(1))

f (L2,1(1))
xiii



Extending to realistic flows

• Data-driven, finite-time, aperiodic setting

• How do we get at transport?

• Recall the flow, x �→ φ
t+T
t

(x)

x
φ
t0      

(x)
.

.

t0+T
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Identify regions of high sensitivity of initial conditions

• Small initial perturbations δx(t) grow like

δx(t + T ) = φ
t+T
t

(x + δx(t))− φ
t+T
t

(x)

=
dφ

t+T
t

(x)

dx
δx(t) + O(||δx(t)||2)

x
φ
t0      

(x)
.

.

x + δx δx(t0+T)

.

.

t0+T

φ
t0      

(x + δx)t0+T

δx(t0)
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Identify regions of high sensitivity of initial conditions

• Small initial perturbations δx(t) grow like

δx(t + T ) = φ
t+T
t

(x + δx(t))− φ
t+T
t

(x)

=
dφ

t+T
t

(x)

dx
δx(t) + O(||δx(t)||2)

xvi



Invariant manifold analogs: FTLE-LCS approach

• The finite-time Lyapunov exponent (FTLE),

σ
T
t (x) =

1

|T | log

�����
dφ

t+T
t

(x)

dx

�����
measures the maximum stretching rate over the interval T of trajectories
starting near the point x at time t

• Ridges of σT
t

are candidate hyperbolic codim-1 surfaces; finite-time
analogs of stable/unstable manifolds; Lagrangian coherent structures1
280 S.C. Shadden et al. / Physica D 212 (2005) 271–304

(a) σ = 3x4−4x3−12x2+18
12(1+4y2) . (b) Side view.

(c) Curvature measures evaluated along the x-axis (i.e., y = 0). (d) Close-up.

Fig. 1. Comparison between ridge definitions. Notice that the second-derivative ridge is slightly shorter than the curvature ridge.

Therefore we can expect the difference between the two measures to be identically zero or non-existent for all
practical purposes. For autonomous systems, σ is constant along a ridge (asymptotically), hence the two definitions
of ridge are always identical for such systems.

2.5. Lagrangian coherent structures

Given the graph of a function, the Hessian only represents the curvature of the graph at local extrema,
therefore defining a ridge in terms of principal curvatures gives a better physical interpretation and is more
intrinsic. However, the notion of a second-derivative ridge is somewhat simpler and more convenient, as we
shall see later in this work. Also, we have shown that a second-derivative ridge is always a subset of a
principal curvature ridge, and moreover the two definitions are nearly identical for all practical purposes. In
addition, the second-derivative definition facilitates computational implementation. Therefore, we define LCS as
follows:

pij pi+1 jpi−1 j

pi j−1

pi j+1

p
′

ij

p
′

i+1 j

p
′

i−1 j

p
′

i j−1

p
′

i j+1

1
cf. Bowman, 1999; Haller & Yuan, 2000; Haller, 2001; Shadden, Lekien, Marsden, 2005
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Invariant manifold analogs: FTLE-LCS approach
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Invariant manifold analogs: FTLE-LCS approach
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Invariant manifold analogs: FTLE-LCS approach

• We can define the FTLE for Riemannian manifolds2

σ
T
t (x) =

1

|T | ln
���Dφ

t+T
t

��� .
=

1

|T | ln



max
y �=0

���Dφ
t+T
t

(y)

���
�y�





with y a small perturbation in the tangent space at x.

pi

p1

p2

p3

pj
pN

p
′

i

p
′

1

p
′

2

p
′

3

p
′

j

p
′

N pi

p1 p2
pj

v1

v2

vj

p
′

i

p
′

1

p
′

2

p
′

j

v
′

1

v
′

2

v
′

j

M

Tpi
M

Tp′

i
M

2
Lekien & Ross [2010] Chaos
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Hurricanes and lobe dynamics

orange = repelling LCSs, blue = attracting LCSs satellite

Andrea, first storm of 2007 hurricane season

cf. Sapsis & Haller [2009], Du Toit & Marsden [2010], Lekien & Ross [2010], Tallapragada & Ross [2011]
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Hurricanes and lobe dynamics

Andrea at one snapshot; LCS shown (orange = repelling, blue = attracting)
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Hurricanes and lobe dynamics

orange = repelling (stable manifold), blue = attracting (unstable manifold)
xxiii



Hurricanes and lobe dynamics

orange = repelling (stable manifold), blue = attracting (unstable manifold)
xxiv



Hurricanes and lobe dynamics

Portions of lobes colored; magenta = outgoing, green = incoming, purple = stays out
xxv



Hurricanes and lobe dynamics

Portions of lobes colored; magenta = outgoing, green = incoming, purple = stays out
xxvi



Hurricanes and lobe dynamics

Sets behave as lobe dynamics dictates
xxvii
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Atmospheric transport network relevant for aeroecology

Skeleton of large-scale
horizontal transport

relevant for large-scale

spatiotemporal patterns

of important biota

e.g., plant pathogens

orange = repelling LCSs, blue = attracting LCSs
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Aerial sampling:!
40 m – 400 m altitude!





Atmospheric transport network relevant for aeroecology
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Summary of Hypothesis Testing

• Of 100 samples, only 73 sample pairs within 24 hours

• Of those, 16 show punctuated changes in the concentration of Fusarium

• Punctuated change ⇒ repelling LCS passage 70% of the time

(p = 0.0017)

• Punctuated changes were significantly associated with the

movement of a repelling LCS

• Correlation poor for attracting LCS: punctuated change ⇒ attracting
LCS passage 37% of the time (p = 0.33)
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Example: Filament bounded by repelling LCS

Sampling

 location

(d) (e) (f)

(a) (b) (c)

100 km 100 km 100 km

12:00 UTC 1 May 2007 15:00 UTC 1 May 2007 18:00 UTC 1 May 2007
xxxvi



Example: Filament bounded by repelling LCS

(d)
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100 km 100 km 100 km
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Direct computation of coherent sets

• Take probabilistic point of view

• Partition phase space into loosely coupled regions

Coherent sets ≈ “Leaky” regions with a long residence time3

phase space is divided into several invariant and almost-invariant sets.

3
work of Dellnitz, Junge, Deuflhard, Froyland, Schütte, et al
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Direct computation of coherent sets

• Create box partition of phase space B = {B1, . . . Bq}, with q large

• Consider a q-by-q transition (Ulam) matrix, P , for our dynamical
system, where

Pij =
m(Bi ∩ φ−1

(Bj))

m(Bi)
,

the transition probability from Bi to Bj using φ = φ
t+T
t

• P approximates the flow map φ
t+T
t

via a finite state Markov chain.
xxxix



Direct computation of coherent sets

• A set B is called almost-invariant over the interval [t, t + T ] if

ρ(B) =
m(B ∩ φ−1

(B))

m(B)
≈ 1.

• Can maximize value of ρ over all possible combinations of sets B ∈ B.

• In practice, AISs or relatedly, almost-cyclic sets (ACSs), identified via
eigenvectors (of eigenvalues with |λ| ≈ 1) of P or graph-partitioning
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Identifying coherent sets

• Consider lid-driven cavity flow system with system parameter τf

• For τf > 1, periodic points and manifolds exist

• Coherent set boundaries are manifolds of periodic points

• Known previously4 and applies to more general objects than periodic
points, i.e. normally hyperbolic invariant manifolds (NHIMs)

4
Dellnitz, Junge, Lo, Marsden, Padberg, Preis, Ross, Thiere [2005] Phys. Rev. Lett.; Dellnitz, Junge,

Koon, Lekien, Lo, Marsden, Padberg, Preis, Ross, Thiere [2005] Int. J. Bif. Chaos
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Identifying coherent sets

Poincaré section for τf < 1 ⇒ no obvious structure!

• For τf < 1, no periodic orbits of low period known

• Is the phase space featureless?

• Consider transition matrix P
t+τf

t
induced by Poincaré map φ

t+τf

t

xlii



Identifying coherent sets

Top eigenvectors for τf = 0.99 reveal hierarchy of phase space structures

ν2

ν3 ν4

ν5 ν6
xliii



Identifying coherent sets

The zero contour (black) is the boundary between the two almost-invariant sets.

• Three almost-cyclic coherent sets (ACSs) of period 3

• ACSs effectively replace compact region bounded by saddle manifolds

• Also: we see a dynamical remnant of the global ‘stable and un-

stable manifolds’ of the saddle points, even there are no more
saddle points

xliv



Identifying coherent sets

Almost-cyclic sets stirring the surrounding fluid like ‘ghost rods’
— works even when periodic orbits are absent!

Movie shown is second eigenvector for P
t+τf

t
for t ∈ [0, τf )
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Identifying coherent sets

(a)

(b)

(c)

(d)

x

y

x

t

f

f

f b

Braid of ACSs gives lower bound of entropy via Thurston-Nielsen
— One only needs approximately cyclic blobs of fluid
— Even though the theorems require exactly periodic points!
— Stremler, Ross, Grover, Kumar [2011] Phys. Rev. Lett.
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Eigenvalues/eigenvectors vs. bifurcation parameter

Movie shows change in eigenvector along

branch marked with ‘−�−’ above (from a

to f), as τf decreases ⇒
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Coherent sets in the atmosphere

• Coherent sets during 24 hours starting 09:00 1 May 2007
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Final words on coherent sets & transport

� What are the robust descriptions of coherent sets and
transport which work in aperiodic, finite-time settings?

� Methods for finding boundaries of coherent sets and co-
herent sets themselves are fruitful for illuminating struc-
ture and transport.

� Lobe dynamics, finite-time symbolic dynamics...

� In analogy with point vortices, can we find equations of
motion for generalized coherent sets and their influence
on each other?
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The End

For papers, movies, etc., visit:
www.shaneross.com
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• Tallapragada, Ross, Schmale [2011] Lagrangian coherent structures are associated with
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