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Lagrangian coherent structures —
coherent structures moving with the fluid

hurricanes tornados eddies

Why Lagrangian coherent structures?
Natural flow visualization
Insight for design and control
Application to fluid and non-fluid systems



Lagrangian coherent structures

A

Two strategies from dynamical systems:
(1) Identify their “skeleton’ or boundaries
(2) identify the structures directly




Lagrangian coherent structures

Two strategies from dynamical systems:
(1) Identify their “skeleton’ or boundaries
(2) identify the structures directly

For (1):
For time-periodic or steady fluid velocity fields, identify
periodic orbits + their stable & unstable manifolds.

But for realistic flows,
Time-independent and aperiodic, data-driven, finite-time,
so heed something else?

For (2):
Discretize the flow map over timescale of interest;
determine coherent regions via eigenmodes, graph methods



Atmosphere: Antarctic polar vortex



Atmosphere: Antarctic polar vortex



Atmosphere: continental U.S.



Periodic velocity field

If M= fluid domain, the flow map,
gbﬁT M — M,
t+1

takes points x — ¢, (x) to their location after time 7’




Periodic velocity field

Suppose our velocity field is periodic with period 7" and

we consider the flow map f = ¢! over one period

To understand the transport of points under the map f,
consider invariant manifolds of saddle fixed points

Let p;,2 = 1, ..., N, denote a collection of saddle-type
hyperbolic fixed points for f.



Partition phase space into coherent regions

Natural way to partition phase space
Pieces of W"(p;) and W?*(p;) partition M.

X
P
P3

Unstable and stable manifolds in red and green, resp.



Partition phase space into coherent regions

e Intersection of unstable and stable manifolds define boundaries.




Partition phase space into coherent regions

o These boundaries divide the phase space into coherent regions.




Label mobile subregions: ‘atoms’ of transport

o Can label mobile subregions based on their past and future whereabouts
under one iterate of the map, e.g., (..., Ry, Ry, Ry, Ry}, Ro, .. .)




Lobe dynamics: transport across a boundary

Ulf~Yq),qlJS[f q), q| forms boundary of two lobes;
one in Iy, labeled L (1), or equivalently (|Ry], R>),
where f((|R1], Ro)) = (Ry, | Ro]), etc. for Ly (1)

Ly (1) Ry




Lobe dynamics: transport across a boundary

Under one iteration of f, only points in L;s(1) can
move from R; into Ry by crossing B, etc.

['he two lobes L 5(1) and Lo (1) are called a turnstile.

Ly (1) Ry
I q

p Lo S (Lo 1(1)) P

J (L 2(1))

/g



Lobe dynamics: transport across a boundary

Essence of lobe dynamics: dynamics associated with
crossing a boundary is reduced to the dynamics
of turnstile lobes associated with the boundary.

Ly (1) Ry
S (Ly1(1))

d

J (Lo (D) bj



Extending to realistic flows

Data-driven, finite-time, aperiodic setting
How do we get at transport?

Recall the flow, x — gb?T(az)

G (0



Identify regions of high sensitivity of initial conditions

Small initial perturbations () grow like

Sa(t+T) = ¢ (v + 0x(t) — ¢ (2)

t+1
_ do} dgf Js2(t) + O(I52()| 12

q)ttoJrT(x + 0x)

X+ 0x Sx(ty+T)

6X(l‘()x

x \/\/\/ e



Identify regions of high sensitivity of initial conditions

Small initial perturbations () grow like

Sa(t+T) = ¢ (v + 0x(t) — ¢ (2)

_ 9@ 4 oD

dx




Invariant manifold analogs: FTLE-LCS approach

The finite-time Lyapunov exponent (FTLE),

1 dgbt—i_T(CI?)
0?(:1:) = T log tdw

measures the maximum stretching rate over the interval 1" of trajectories
starting near the point x at time ¢

Ridges of 0? are candidate hyperbolic codim-1 surfaces; finite-time
analogs of stable/unstable manifolds; Lagrangian coherent structures’

lef. Bowman, 1999; Haller & Yuan, 2000; Haller, 2001; Shadden, Lekien, Marsden, 2005



Invariant manifold analogs: FTLE-LCS approach
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Invariant manifold analogs: FTLE-LCS approach

We can define the FTLE for Riemannian manifolds?

| ’ t+T ||
T t+T||

o :—lnHng H = —In | max
@) =1 i | et

with y a small perturbation in the tangent space at x.

A

p3
Lekien & Ross [2010] Chaos

Pj




Hurricanes and lobe dynamics

The GOES satellite image taken at 1515 UTC shows an early-season
Subtropical Storm, Andrea farming off the southeast US coast.

GOES-12 RGE= CHI{ ) A4) 051

orange = repelling LCSs, blue = attracting LCSs satellite

Andrea, first storm of 2007 hurricane season

cf. Sapsis & Haller [2009], Du Toit & Marsden [2010], Lekien & Ross [2010], Tallapragada & Ross [2011]



Hurricanes and lobe dynamics

Andrea at one snapshot; LCS shown (orange = repelling, blue = attracting)



Hurricanes and lobe dynamics

orange = repelling (stable manifold),  blue = attracting (unstable manifold)



Hurricanes and lobe dynamics

orange = repelling (stable manifold),  blue = attracting (unstable manifold)



Hurricanes and lobe dynamics

Portions of lobes colored; magenta = outgoing, green = incoming, purple = stays out



Hurricanes and lobe dynamics

Portions of lobes colored; magenta = outgoing, green = incoming, purple = stays out



Hurricanes and lobe dynamics

Sets behave as lobe dynamics dictates



Invasive species riding coherent structures

Hurricane lvan (2004)
brought new crop
disease (soybean

rust) to U.S.

>~ ¢
= 5

From Rio'Cauca
region of Colombia Disease extent

Cost of invasive organisms is




Atmospheric transport of microorganisms

Free atmosphere

A
! Horizontal transport distance: 1 km- 5000 km
N2 '3 PBL|~50 m - 3km
Clump of disease spores M

Deposition
of spores

Source - Infested habitat Target habitat

e.g., Fusarium
e Spore production, release, escape from surface

e Long-range transport (time-scale hours to days)

e Deposition, infection efficiency, host susceptibility
Isard & Gage [2001]



Atmospheric transport network relevant for aeroecology

Skeleton of large-scale
horizontal transport

relevant for large-scale
spatiotemporal patterns
of important biota

e.g., plant pathogens

orange = repelling LCSs, blue = attracting LCSs
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Atmospheric transport network relevant for aeroecology




/ PCR, sequencing, and BLAST searches
against FUSARIUM-ID and GenBank

s ¥

UAVs and ground-level sampler Colonies of Fusarium Single-spored cultures

|

Living culture collection

Morphology-based verification
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Concentration of Fusarium spores (number/m?) for samples from 100 flights conducted
between August 2006 and March 2010.
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Punctuated changes:
correlated to LCS passage?

Detected concentration
of Fusarium at sampling
location

time



Punctuated changes:
correlated to LCS passage?

N

®
Sampling
location

Detected concentration
of Fusarium at sampling
location

time



Punctuated changes:
correlated to LCS passage?
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Detected concentration
of Fusarium at sampling
location

Punctuated changes:
correlated to LCS passage?

®
Sampling —>
location

time
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LCS passage times: orange = repelling LCSs, blue = attracting
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Compare: are there patterns?



Summary of Hypothesis Testing

Of 100 samples, only 73 sample pairs within 24 hours
Of those, 16 show punctuated changes in the concentration of Fusarium

Punctuated change = repelling LCS passage 70% of the time
(p = 0.0017)

Punctuated changes were significantly associated with the
movement of a repelling LCS

Correlation poor for attracting LCS: punctuated change = attracting
LCS passage 37% of the time (p = 0.33)



Example: Filament bounded by repelling LCS

Sampling
location

(d) (e) ®
12:00 UTC 1 May 2007 15:00 UTC 1 May 2007 18:00 UTC 1 May 2007



Example: Filament bounded by repelling LCS
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Direct computation of coherent sets

Take probabilistic point of view
Partition phase space into loosely coupled regions

Coherent sets ~ “Leaky” regions with a long residence time?

phase space is divided into several invariant and almost-invariant sets.

Swork of Dellnitz, Junge, Deuflhard, Froyland, Schiitte, et al



Direct computation of coherent sets

Create box partition of phase space B = { By, ... B}, with ¢ large

Consider a ¢-by-q transition (Ulam) matrix, P, for our dynamical

system, where
m(B; N ¢~ 1(B)))

P =
Z] m(B;)
the transition probability from B; to B using ¢ = ¢§+T

B;
¢~ (B;)
B; N¢~ (By)
t+T

P approximates the flow map ¢; " via a finite state Markov chain.



Direct computation of coherent sets

A set B is called almost-invariant over the interval [t,t + T if

BN¢ (B))

m(B) ~ 1.

p(B) = il

Can maximize value of p over all possible combinations of sets B € B.

In practice, AlSs or relatedly, almost-cyclic sets (ACSs), identified via
(of eigenvalues with |\| & 1) of P or graph-partitioning



Identifying coherent sets
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Consider lid-driven cavity flow system with system parameter 7/
For 74 > 1, periodic points and manifolds exist
Coherent set boundaries are manifolds of periodic points

Known previously* and applies to more general objects than periodic
points, i.e. normally hyperbolic invariant manifolds (NHIMs)

Dellnitz, Junge, Lo, Marsden, Padberg, Preis, Ross, Thiere [2005] Phys. Rev. Lett.; Dellnitz, Junge,
Koon, Lekien, Lo, Marsden, Padberg, Preis, Ross, Thiere [2005] Int. J. Bif. Chaos



Identifying coherent sets
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Poincaré section for 7r < 1 = no obvious structure!

o For 7¢ < 1, no periodic orbits of low period known

e Is the phase space featureless?

_ o , t+7¢ . . , t+7
o Consider transition matrix P, 7 induced by Poincaré map ¢, /



Identifying coherent sets

Top eigenvectors for 7y = 0.99 reveal hierarchy of phase space structures




Identifying coherent sets
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The zero contour (black) is the boundary between the two almost-invariant sets.

Three almost-cyclic coherent sets (ACSs) of period 3
ACSs effectively replace compact region bounded by saddle manifolds

Also: we see a dynamical remnant of the global ‘stable and un-
stable manifolds’ of the saddle points, even there are no more
saddle points



Identifying coherent sets

Almost-cyclic sets stirring the surrounding fluid like ‘ghost rods’
— works even when periodic orbits are absent!

. . . t+
Movie shown is second eigenvector for P, Tfort € 0,77)



Identifying coherent sets

RS

Braid of ACSs gives lower bound of entropy via Thurston-Nielsen
— One only needs approximately cyclic blobs of fluid

— Even though the theorems require exactly periodic points!

— Stremler, Ross, Grover, Kumar [2011] Phys. Rev. Lett.




Eigenvalues/eigenvectors vs. bifurcation parameter
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Movie shows change in eigenvector along
branch marked with ‘-o-" above (from a

to f), as 7y decreases =



Coherent sets in the atmosphere

U600 -300 0 300 600

o Coherent sets during 24 hours starting 09:00 1 May 2007



Final words on coherent sets & transport

What are the robust descriptions of coherent sets and
transport which work in aperiodic, finite-time settings?

Methods for finding boundaries of coherent sets and co-
herent sets themselves are fruitful for illuminating struc-

ture and transport.
Lobe dynamics, finite-time symbolic dynamics...

In analogy with point vortices, can we find equations of
motion for generalized coherent sets and their influence

on each other?



The End

For papers, movies, etc., visit:
www.shaneross.com
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