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Intermittency and chaotic transitions

e.g., transitioning across “bottlenecks” in phase space

Marchal [1990]
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Multi-well multi-degree of freedom systems

• Examples: chemistry, vehicle dynamics, structural mechanics
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Transitions through bottlenecks via tubes

Topper [1997]

•Wells connected by phase space transition tubes ' S1×R for 2 DOF
— Conley, McGehee, 1960s
— Llibre, Mart́ınez, Simó, Pollack, Child, 1980s
— De Leon, Mehta, Topper, Jaffé, Farrelly, Uzer, MacKay, 1990s
— Gómez, Koon, Lo, Marsden, Masdemont, Ross, Yanao, 2000s
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Is this geometric theory correct?
• Good agreement with direct numerical simulation — molecular re-

actions, ‘reaction island theory’ e.g., De Leon [1992]
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— celestial mechanics, asteroid escape rates e.g., Jaffé, Ross, Lo, Marsden, Farrelly, Uzer [2002]
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Is this geometric theory correct?

• but experimental verification has been lacking

•Our goal: We seek to perform experimental verification using a table
top experiment with 2 degrees of freedom (DOF)

• If successful, apply theory to ≥2 DOF systems, combine with control:

• structural mechanics
— re-configurable deformation of flexible objects
— adaptive structures that can bend, fold, and twist to provide advanced
engineering opportunities for deployable structures, mechanical sensors

• vehicle stability
— capsize problem, etc.
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Motion near saddles

� Near rank 1 saddles in N DOF, linearized vector field
eigenvalues are

±λ and ±iωj, j = 2, . . . , N

� Equilibrium point is of type
saddle× center× · · · × center (N − 1 centers).
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Motion near saddles

� For excess energy ∆E > 0 above the saddle, there’s a
normally hyperbolic invariant manifold (NHIM) of bound
orbits

M∆E =


N∑
i=2

ωi
2

(
p2
i + q2

i

)
= ∆E


� So, M∆E ' S2N−3, topologically, a (2N − 3)-sphere

�N = 2,

M∆E =
{
ω
2

(
p2

2 + q2
2

)
= ∆E

}
M∆E ' S1, a periodic orbit of period Tpo = 2π

ω
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Motion near saddles: 2 DOF

� Cylindrical tubes of orbits asymptotic to M∆E: stable and
unstable invariant manifolds, W s

±(M∆E),W u
±(M∆E),' S1×R

� Enclose transitioning trajectories
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Motion near saddles: 2 DOF

•B : bounded orbits (periodic): S1

•A : asymptotic orbits to 1-sphere: S1 × R (tubes)

•T : transitioning and NT : non-transitioning orbits.
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Tube dynamics

Poincare Section Ui

De Leon [1992]

�Tube dynamics: All transitioning motion between wells
connected by bottlenecks must occur through tube
• Imminent transition regions, transitioning fractions

• Consider k Poincaré sections Ui, various excess energies ∆E
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Verification by simulation

� Structured transition statistics in chemistry, etc 3+ DOF
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Verification by experiment

• Simple table top experiments; e.g., ball rolling on a 3D-printed surface

Virgin, Lyman, Davis [2010] Am. J. Phys.
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Ball rolling on a surface — 2 DOF

• The potential energy is V (x, y) = gH(x, y)− V0,
where the surface is arbitrary, e.g., we chose

H(x, y) = α(x2 + y2)− β(

√
x2 + γ +

√
y2 + γ)− ξxy + H0.
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Ball rolling on a surface — 2 DOF

• The potential energy is V (x, y) = gH(x, y)− V0,
where the surface is arbitrary, e.g., we chose

H(x, y) = α(x2 + y2)− β(

√
x2 + γ +

√
y2 + γ)− ξxy + H0.

typical experimental trial
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Transition tubes in the rolling ball system
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Transition tubes in the rolling ball system
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Transition tubes in the rolling ball system
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Transition tubes in the rolling ball system
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Transition tubes in the rolling ball system
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Transition tubes in the rolling ball system
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Transition tubes in the rolling ball system
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Transition tubes in the rolling ball system
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Transition tubes in the rolling ball system
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Transition tubes in the rolling ball system
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Transition tubes in the rolling ball system
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Analysis of experimental data

12
-600

-400

-200

0

200

400

600

800

1000

1200

1400

108640 2

time

• 120 experimental trials of about 10 seconds each, recorded at 50 Hz

xxvii



Analysis of experimental data

12
-600

-400

-200

0

200

400

600

800

1000

1200

1400

108640 2

time

• 120 experimental trials of about 10 seconds each, recorded at 50 Hz

• 3500 intersections of Poincaré sections, sorted by energy
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Analysis of experimental data
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Poincaré sections at various energy ranges
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Experimental confirmation of transition tubes

• Theory predicts > 95% of transitions

• Consider overall trend in transition fraction as excess energy grows
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Theory for small excess energy, ∆E

• Area of the transitioning region, the tube cross-section (MacKay [1990])

Atrans = Tpo∆E

where Tpo = 2π/ω period of unstable periodic orbit in bottleneck

• Area of energy surface

A∆E = A0 + τ∆E

where

A0 = 2

∫ rmax

rmin

√
−14

5 gH(r)(1 + ∂H
∂r

2
(r))dr

and

τ =

∫ rmax

rmin

√√√√14
5 (1 + ∂H

∂r
2
(r))

−gH(r)
dr
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Theory for small excess energy, ∆E

• The transitioning fraction, under well-mixed assumption,

ptrans =
Atrans

A∆E

=
Tpo
A0

∆E
(

1− τ
A0

∆E +O(∆E2)
)

• For small ∆E, growth in ptrans with ∆E is linear, with slope

∂ptrans

∂∆E
=
Tpo

A0

• For slightly larger values of ∆E, there will be a correction term leading
to a decreasing slope,

∂ptrans

∂∆E
=
Tpo

A0

(
1− 2 τ

A0
∆E
)
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Theory for small excess energy, ∆E
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Theory for small excess energy, ∆E
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Theory for small excess energy, ∆E
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Next steps — structural mechanics

Buckling, bending, twisting, and crumpling of flexible bodies
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Next steps — structural mechanics

X (mode 1)

Y (mode 2)
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Final words

• 2 DOF experiment for understanding geometry of transitions — verified
geometric theory of tube dynamics

• Unobserved unstable periodic orbits have observable consequences

• Future work: control of transitions in multi-DOF systems
e.g., triggering and avoidance of buckling in flexible structures, capsize
avoidance for ships in rough seas and floating structures

• For more, see Lawrie Virgin’s talk tomorrow, 3:45pm, in
‘CP25 Topics in Classical and Fluid Dynamical Systems’

• also Isaac Yeaton’s talk tomorrow, 4:45pm (CP25)
Snakes on An Invariant Plane: Dynamics of Flying Snakes

Paper in preparation; check status at:
shaneross.com
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