Experimental verification of criteria for escape

from a potential well in a multi-degree of freedom system

Shane Ross
Biomedical Engineering and Mechanics, Virginia Tech shaneross.com

with Amir BozorgMagham (Univ. of Maryland) and Lawrie Virgin (Duke Univ.)

SIAM Conference on Applications of Dynamical Systems (Snowbird, May 17, 2015)

Intermittency and chaotic transitions

e.g., transitioning across "bottlenecks" in phase space

Multi-well multi-degree of freedom systems

- Examples: chemistry, vehicle dynamics, structural mechanics

Transitions through bottlenecks via tubes

Topper [1997]

- Wells connected by phase space transition tubes $\simeq S^{1} \times \mathbb{R}$ for 2 DOF
- Conley, McGehee, 1960s
— Llibre, Martínez, Simó, Pollack, Child, 1980s
- De Leon, Mehta, Topper, Jaffé, Farrelly, Uzer, MacKay, 1990s
- Gómez, Koon, Lo, Marsden, Masdemont, Ross, Yanao, 2000s

Is this geometric theory correct?

- Good agreement with direct numerical simulation - molecular reactions, 'reaction island theory' e.g., De Leon [1992]

- celestial mechanics, asteroid escape rates e.g., Jaffe, Ross, Lo, Marsden, Farrelly, Uzer [2002]

Is this geometric theory correct?

- but experimental verification has been lacking
- Our goal: We seek to perform experimental verification using a table top experiment with 2 degrees of freedom (DOF)
- If successful, apply theory to ≥ 2 DOF systems, combine with control:
- structural mechanics
- re-configurable deformation of flexible objects
— adaptive structures that can bend, fold, and twist to provide advanced engineering opportunities for deployable structures, mechanical sensors
- vehicle stability
- capsize problem, etc.

Motion near saddles

\square Near rank 1 saddlles in N DOF, linearized vector field eigenvalues are

$$
\pm \lambda \text { and } \pm i \omega_{j}, j=2, \ldots, N
$$

\square Equilibrium point is of type saddle \times center $\times \cdots \times$ center $(N-1$ centers).

the saddle-space projection and $N-1$ center projections - the N canonical planes

Motion near saddles

\square For excess energy $\Delta E>0$ above the saddle, there's a normally hyperbolic invariant manifold (NHIM) of bound orbits

$$
\mathcal{M}_{\Delta E}=\left\{\sum_{i=2}^{N} \frac{\omega_{i}}{2}\left(p_{i}^{2}+q_{i}^{2}\right)=\Delta E\right\}
$$

\square So, $\mathcal{M}_{\Delta E} \simeq S^{2 N-3}$, topologically, a $(2 N-3)$-sphere
$\square N=2$,

$$
\mathcal{M}_{\Delta E}=\left\{\frac{\omega}{2}\left(p_{2}^{2}+q_{2}^{2}\right)=\Delta E\right\}
$$

$\mathcal{M}_{\Delta E} \simeq S^{1}$, a periodic orbit of period $T_{\mathrm{po}}=\frac{2 \pi}{\omega}$

Motion near saddles: 2 DOF

\square Cylindrical tubes of orbits asymptotic to $\mathcal{M}_{\Delta E}$: stable and unstable invariant manifolds, $W_{ \pm}^{s}\left(\mathcal{M}_{\Delta E}\right), W_{ \pm}^{u}\left(\mathcal{M}_{\Delta E}\right) \simeq \simeq S^{1} \times \mathbb{R}$
\square Enclose transitioning trajectories

Motion near saddles: 2 DOF

- B : bounded orbits (periodic): S^{1}
- A : asymptotic orbits to 1 -sphere: $S^{1} \times \mathbb{R}$ (tubes)
- T : transitioning and NT : non-transitioning orbits.

Tube dynamics

Poincare Section U_{i}

\square Tube dynamics: All transitioning motion between wells connected by bottlenecks must occur through tube

- Imminent transition regions, transitioning fractions
- Consider k Poincaré sections U_{i}, various excess energies ΔE

Verification by simulation

\square Structured transition statistics in chemistry, etc 3+ DOF

Verification by experiment

- Simple table top experiments; e.g., ball rolling on a 3D-printed surface

Virgin, Lyman, Davis [2010] Am. J. Phys.

Ball rolling on a surface - 2 DOF

- The potential energy is $V(x, y)=g H(x, y)-V_{0}$, where the surface is arbitrary, e.g., we chose

$$
H(x, y)=\alpha\left(x^{2}+y^{2}\right)-\beta\left(\sqrt{x^{2}+\gamma}+\sqrt{y^{2}+\gamma}\right)-\xi x y+H_{0}
$$

Ball rolling on a surface - 2 DOF

- The potential energy is $V(x, y)=g H(x, y)-V_{0}$, where the surface is arbitrary, e.g., we chose

$$
H(x, y)=\alpha\left(x^{2}+y^{2}\right)-\beta\left(\sqrt{x^{2}+\gamma}+\sqrt{y^{2}+\gamma}\right)-\xi x y+H_{0}
$$

typical experimental trial

Transition tubes in the rolling ball system

Transition tubes in the rolling ball system

transition tube from quadrant 1 to 2

Transition tubes in the rolling ball system

Analysis of experimental data

- 120 experimental trials of about 10 seconds each, recorded at 50 Hz

Analysis of experimental data

- 120 experimental trials of about 10 seconds each, recorded at 50 Hz
- 3500 intersections of Poincaré sections, sorted by energy

Analysis of experimental data

- 120 experimental trials of about 10 seconds each, recorded at 50 Hz
- 3500 intersections of Poincaré sections, sorted by energy
- 400 transitions detected

Analysis of experimental data

- 120 experimental trials of about 10 seconds each, recorded at 50 Hz
- 3500 intersections of Poincaré sections, sorted by energy
- 400 transitions detected

Poincaré sections at various energy ranges

Experimental confirmation of transition tubes

- Theory predicts $>95 \%$ of transitions
- Consider overall trend in transition fraction as excess energy grows

Theory for small excess energy, ΔE

- Area of the transitioning region, the tube cross-section (MacKay [1990])

$$
A_{\text {trans }}=T_{\mathrm{po}} \Delta E
$$

where $T_{\mathrm{po}}=2 \pi / \omega$ period of unstable periodic orbit in bottleneck

- Area of energy surface

$$
A_{\Delta E}=A_{0}+\tau \Delta E
$$

where

$$
A_{0}=2 \int_{r_{\min }}^{r_{\max }} \sqrt{-\frac{14}{5} g H(r)\left(1+{\frac{\partial H^{2}}{\partial r}}^{2}(r)\right)} d r
$$

and

$$
\tau=\int_{r_{\min }}^{r_{\max }} \sqrt{\frac{\frac{14}{5}\left(1+\frac{\partial H^{2}}{\partial r}(r)\right)}{-g H(r)}} d r
$$

Theory for small excess energy, ΔE

- The transitioning fraction, under well-mixed assumption,

$$
\begin{aligned}
p_{\text {trans }} & =\frac{A_{\text {trans }}}{A_{\Delta E}} \\
& =\frac{T_{\mathrm{po}}}{A_{0}} \Delta E\left(1-\frac{\tau}{A_{0}} \Delta E+\mathcal{O}\left(\Delta E^{2}\right)\right)
\end{aligned}
$$

- For small ΔE, growth in $p_{\text {trans }}$ with ΔE is linear, with slope

$$
\frac{\partial p_{\text {trans }}}{\partial \Delta E}=\frac{T_{\mathrm{po}}}{A_{0}}
$$

- For slightly larger values of ΔE, there will be a correction term leading to a decreasing slope,

$$
\frac{\partial p_{\text {trans }}}{\partial \Delta E}=\frac{T_{\mathrm{po}}}{A_{0}}\left(1-2 \frac{\tau}{A_{0}} \Delta E\right)
$$

Theory for small excess energy, ΔE

Theory for small excess energy, ΔE

Theory for small excess energy, ΔE

Next steps - structural mechanics

Buckling, bending, twisting, and crumpling of flexible bodies

Next steps - structural mechanics

Final words

- 2 DOF experiment for understanding geometry of transitions - verified geometric theory of tube dynamics
- Unobserved unstable periodic orbits have observable consequences
- Future work: control of transitions in multi-DOF systems e.g., triggering and avoidance of buckling in flexible structures, capsize avoidance for ships in rough seas and floating structures
- For more, see Lawrie Virgin's talk tomorrow, 3:45pm, in 'CP25 Topics in Classical and Fluid Dynamical Systems'
- also Isaac Yeaton's talk tomorrow, 4:45pm (CP25) Snakes on An Invariant Plane: Dynamics of Flying Snakes

Paper in preparation; check status at: shaneross.com

