Connecting orbits and invariant manifolds in the spatial three-body problem

Shane D. Ross

Control and Dynamical Systems, Caltech
Work with G. Gómez, W. Koon, M. Lo, J. Marsden, J. Masdemont Special Session on Celestial Mechanics, January 7, 2004

Introduction

Goal
\square Use dynamical systems techniques to identify key transport mechanisms and useful orbits for space missions.

Outline
\square Circular restricted three-body problem
\square Equilibrium points and invariant manifold structures
\square Construction of trajectories with prescribed itineraries
\square Connecting orbits, e.g., heteroclinic connections
\square Tours of Jupiter's moons

Introduction

Current research importance
\square Development of some NASA mission trajectories, such as the recently launched Genesis Discovery Mission, and the upcoming Jupiter Icy Moons Orbiter
\square Of current astrophysical interest for understanding the transport of solar system material (eg, how ejecta from Mars gets to Earth, etc.)

Three-Body Problem

Circular restricted 3-body problem

\square the two primary bodies move in circles; the much smaller third body moves in the gravitational field of the primaries, without affecting them
\square the two primaries could be Jupiter and a moon
\square the smaller body could be a spacecraft or asteroid
\square we consider the planar and spatial problems
\square there are five equilibrium points in the rotating frame, places of balance which generate interesting dynamics

Three-Body Problem

Circular restricted 3-body problem
\square Consider the two unstable points on line joining the two main bodies - L_{1}, L_{2}

Equilibrium points - L_{1}, L_{2}
\square orbits exist around L_{1} and L_{2}; both periodic and quasiperiodic

- Lyapunov, halo and Lissajous orbits
\square one can draw the invariant manifolds assoicated to L_{1} (and L_{2}) and the orbits surrounding them
\square these invariant manifolds play a key role in what follows

Three-Body Problem

\square Equations of motion (planar):

$$
\ddot{x}-2 \dot{y}=-\bar{U}_{x}, \quad \ddot{y}+2 \dot{x}=-\bar{U}_{y}
$$

where

$$
\bar{U}=-\frac{\left(x^{2}+y^{2}\right)}{2}-\frac{1-\mu}{r_{1}}-\frac{\mu}{r_{2}} .
$$

\square Have a first integral, the Hamiltonian energy, given by

$$
E(x, y, \dot{x}, \dot{y})=\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)+\bar{U}(x, y)
$$

\square Energy manifolds are codimension 1 in the phase space.

Realms of Possible Motion

Effective potential

\square In a rotating frame, the equations of motion describe a particle moving in an effective potential plus a magnetic field (goes back to work of Jacobi, Hill, etc).

Realms of Possible Motion

Effective potential

Level set shows accessible realms

Motion Near Equilibria

For saddles of rank 1

\square Near equilibrium point, suppose linearized Hamiltonian vector field has eigenvalues $\pm i \omega_{j}, j=1, \ldots, N-1$, and $\pm \lambda$.
\square Assume the complexification is diagonalizable.
\square Hamiltonian normal form theory tranforms Hamiltonian into a lowest order form:

$$
H(q, p)=\sum_{i=1}^{N-1} \frac{\omega_{i}}{2}\left(p_{i}^{2}+q_{i}^{2}\right)+\lambda q_{N} p_{N}
$$

\square Equilibrium point is of type
center $\times \cdots \times$ center \times saddle ($N-1$ centers).

Motion Near Equilibria

Multidimensional "saddle point"

\square For fixed energy $H=h$, energy surface $\simeq S^{2 N-2} \times \mathbb{R}$.
\square Constants of motion:
$I_{j}=q_{j}^{2}+p_{j}^{2}, j=1, \ldots, N-1$, and $I_{N}=q_{N} p_{N}$.

The \boldsymbol{N} Canonical Planes

Motion Near Equilibria

Normally hyperbolic invariant manifold at $q_{N}=p_{N}=0$,

$$
\mathcal{M}_{h}=\sum_{i=1}^{n-1} \frac{\omega_{i}}{2}\left(p_{i}^{2}+q_{i}^{2}\right)=h>0
$$

Note that $\mathcal{M}_{h} \simeq S^{2 N-3}$, not a single trajectory.
\square Four "cylinders" of asymptotic orbits: the stable and unstable manifolds $W_{ \pm}^{s}\left(\mathcal{M}_{h}\right), W_{ \pm}^{u}\left(\mathcal{M}_{h}\right)$, which have the structure $S^{2 N-3} \times \mathbb{R}$.

Flow Near Equilibria

\square Dynamics near $L_{1} \& L_{2}$ in spatial problem: saddle \times center \times center.
\square Hamiltonian for linearized equations has eigenvalues $\pm \lambda, \pm i \nu$, and $\pm i \omega$, where $\nu \neq \omega$,
\square Change of coordinates yields

$$
H_{2}=\lambda q_{1} p_{1}+\frac{\nu}{2}\left(q_{2}^{2}+p_{2}^{2}\right)+\frac{\omega}{2}\left(q_{3}^{2}+p_{3}^{2}\right)
$$

\square For fixed energy $H=h$, energy surface $\simeq S^{4} \times \mathbb{R}$.
\square Constants of motion:
$q_{1} p_{1}, q_{2}^{2}+p_{2}^{2}$ and $q_{3}^{2}+p_{3}^{2}$.

Flow Near Equilibria

Normally hyperbolic invariant manifold at $q_{1}=p_{1}=0$,

$$
\mathcal{M}_{h}=\frac{\nu}{2}\left(q_{2}^{2}+p_{2}^{2}\right)+\frac{\omega}{2}\left(q_{3}^{2}+p_{3}^{2}\right)=h>0 .
$$

Note that $\mathcal{M}_{h} \simeq S^{3}$, not a single trajectory.
\square Four "cylinders" of asymptotic orbits: the stable and unstable manifolds $W_{ \pm}^{s}\left(\mathcal{M}_{h}\right), W_{ \pm}^{u}\left(\mathcal{M}_{h}\right)$, which have the structure $S^{3} \times \mathbb{R}$.

Flow Near Equilibria

B : bounded orbits (periodic/quasi-periodic): S^{3} (3-sphere)

- A : asymptotic orbits to 3 -sphere: $S^{3} \times I$ ("tubes")
- T : transit and NT : non-transit orbits.

planar oscillations projection

vertical oscillations projection
saddle projection
The flow in the equilibrium region.

Flow Near Equilibria

- B : bounded orbits (periodic/quasi-periodic): S^{3} (3-sphere)
- A : asymptotic orbits to 3 -sphere: $S^{3} \times I$ ("tubes")
- T : transit and NT : non-transit orbits.

Projection to configuration space.

Transport Between Realms

\square Asymptotic orbits form 4D invariant manifold tubes ($S^{3} \times I$) in 5D energy surface.
\square red $=$ unstable, green $=$ stable

Transport Between Realms

- These manifold tubes play an important role in governing what orbits approach or depart from a moon (transit orbits)
- and orbits which do not (non-transit orbits)
- transit possible for objects "inside" the tube, otherwise no transit - this is important for transport issues

Transport Between Realms

Transport Between Realms

- Transit orbits can be found using a Poincaré section transversal to a tube.

Construction of Trajectories

\square One can systematically construct new trajectories, which use little fuel.

- by linking stable and unstable manifold tubes in the right order - and using Poincaré sections to find trajectories "inside" the tubes
\square One can construct trajectories involving multiple 3-body systems.

Construction of Trajectories

- For a single 3-body system, we wish to link invariant manifold tubes to construct an orbit with a desired itinerary
- Construction of $(X ; M, I)$ orbit.

The tubes connecting the X, M, and I regions.

Construction of Trajectories

- First, integrate two tubes until they pierce a common Poincaré section transversal to both tubes.
- Second, pick a point in the region of intersection and integrate it forward and backward.

Construction of Trajectories

- Integrate two tubes
- Integrate a point in the region of intersection

Construction of Trajectories

- Planar: tubes $(S \times I)$ separate transit/non-transit orbits.
- Red curve (S^{1}) : slice of L_{2} unstable manifold Green curve (S^{1}) : slice of L_{1} stable manifold
- Any point inside the intersection region Δ_{M} is a $(X ; M, I)$ orbit.

Tubes intersect in position

Poincaré section of intersection

Construction of Trajectories

Spatial: Invariant manifold tubes $\left(S^{3} \times I\right)$

- Poincaré slice is a topological 3-sphere S^{3} in \mathbb{R}^{4}.
- S^{3} looks like disk \times disk: $\xi^{2}+\dot{\xi}^{2}+\eta^{2}+\dot{\eta}^{2}=r^{2}=r_{\xi}^{2}+r_{\eta}^{2}$
- Find ($X ; M$) orbit.

(y, \dot{y}) Plane

(z, \dot{z}) Plane

Construction of Trajectories

- Similarly, while the cut of the stable manifold tube is S^{3}, its projection on (y, \dot{y}) plane is a curve for $z=c, \dot{z}=0$.
- Any point inside this curve is a (M, I) orbit.
- Hence, any point inside the intersection region Δ_{M} is a ($X ; M, I$) orbit.

Construction of Trajectories

Intersection Region

Construction of Trajectories

Construction of an (X, M, I) orbit

Connecting Orbits

Tours of Jupiter's Moons

Tours of planetary satellite systems.
\square Example 1: Europa \rightarrow lo \rightarrow Jupiter

1: Begin Tour
2: Europa Encounter
3: Jump Between Tubes
4: Io Encounter
5: Collide with Jupiter

Tours of Jupiter's Moons

\square Example 2: Ganymede \rightarrow Europa \rightarrow injection into Europa orbit

Tours of Jupiter's Moons

- The Petit Grand Tour can be constructed as follows:
- Approximate 4-body system as 2 nested 3-body systems.
- Choose an appropriate Poinaré section.
- Link the invariant manifold tubes in the proper order.
- Integrate initial condition (patch point) in the 4-body model.

Look for intersection of tubes

Poincaré section at intersection

Some References

- Gómez, G., W.S. Koon, M.W. Lo, J.E. Marsden, J. Masdemont and S.D. Ross [2001] Connecting orbits and invariant manifolds in the spatial three-body problem. submitted to Nonlinearity.
- Gómez, G., W.S. Koon, M.W. Lo, J.E. Marsden, J. Masdemont and S.D. Ross [2001] Invariant manifolds, the spatial three-body problem and space mission design. AAS/AIAA Astrodynamics Specialist Conference.
- Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2000] Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10(2), 427-469.

The End

