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Introduction

�Goal

� Use dynamical systems techniques to identify key trans-
port mechanisms and useful orbits for space missions.

�Outline

� Circular restricted three-body problem

� Equilibrium points and invariant manifold structures

� Construction of trajectories with prescribed itineraries

� Connecting orbits, e.g., heteroclinic connections

� Tours of Jupiter’s moons
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Introduction

�Current research importance

� Development of some NASA mission trajectories, such
as the recently launched Genesis Discovery Mission,
and the upcoming Jupiter Icy Moons Orbiter

� Of current astrophysical interest for understanding
the transport of solar system material (eg, how ejecta
from Mars gets to Earth, etc.)
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Three-Body Problem

�Circular restricted 3-body problem

� the two primary bodies move in circles; the much
smaller third body moves in the gravitational field of
the primaries, without affecting them

� the two primaries could be Jupiter and a moon

� the smaller body could be a spacecraft or asteroid

� we consider the planar and spatial problems

� there are five equilibrium points in the rotating frame,
places of balance which generate interesting dynamics
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Three-Body Problem

�Circular restricted 3-body problem

� Consider the two unstable points on line joining the
two main bodies – L1, L2
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Equilibrium points – L1, L2
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Three-Body Problem
� orbits exist around L1 and L2; both periodic and quasi-

periodic

• Lyapunov, halo and Lissajous orbits

� one can draw the invariant manifolds assoicated to L1

(and L2) and the orbits surrounding them

� these invariant manifolds play a key role in what follows
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Three-Body Problem
� Equations of motion (planar):

ẍ− 2ẏ = −Ūx, ÿ + 2ẋ = −Ūy

where

Ū = −(x2 + y2)

2
− 1− µ

r1
− µ

r2
.

� Have a first integral, the Hamiltonian energy, given by

E(x, y, ẋ, ẏ) =
1

2
(ẋ2 + ẏ2) + Ū(x, y).

� Energy manifolds are codimension 1 in the phase space.
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Realms of Possible Motion

�Effective potential

� In a rotating frame, the equations of motion describe
a particle moving in an effective potential plus a mag-
netic field (goes back to work of Jacobi, Hill, etc).
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Realms of Possible Motion
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Motion Near Equilibria

�For saddles of rank 1

� Near equilibrium point, suppose linearized
Hamiltonian vector field has eigenvalues
±iωj, j = 1, . . . , N − 1, and ±λ.

� Assume the complexification is diagonalizable.

� Hamiltonian normal form theory tranforms
Hamiltonian into a lowest order form:

H(q, p) =

N−1∑
i=1

ωi

2

(
p2

i + q2
i

)
+ λqNpN .

� Equilibrium point is of type
center× · · · × center× saddle (N − 1 centers).
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Motion Near Equilibria

�Multidimensional “saddle point”

� For fixed energy H = h, energy surface ' S2N−2 × R.

� Constants of motion:
Ij = q2

j + p2
j, j = 1, . . . , N − 1, and IN = qNpN .
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Motion Near Equilibria
� Normally hyperbolic invariant manifold

at qN = pN = 0,

Mh =

n−1∑
i=1

ωi

2

(
p2

i + q2
i

)
= h > 0.

Note that Mh ' S2N−3, not a single trajectory.

� Four “cylinders” of asymptotic orbits: the stable and
unstable manifolds W s

±(Mh), W
u
±(Mh), which have the

structure S2N−3 × R.
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Flow Near Equilibria
� Dynamics near L1 & L2 in spatial problem:

saddle × center × center.

� Hamiltonian for linearized equations has eigenvalues
±λ,±iν, and ±iω, where ν 6= ω,

� Change of coordinates yields

H2 = λq1p1 +
ν

2
(q2

2 + p2
2) +

ω

2
(q2

3 + p2
3).

� For fixed energy H = h, energy surface ' S4 × R.

� Constants of motion:
q1p1, q2

2 + p2
2 and q2

3 + p2
3.
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Flow Near Equilibria
� Normally hyperbolic invariant manifold

at q1 = p1 = 0,

Mh =
ν

2
(q2

2 + p2
2) +

ω

2
(q2

3 + p2
3) = h > 0.

Note that Mh ' S3, not a single trajectory.

� Four “cylinders” of asymptotic orbits: the stable and
unstable manifolds W s

±(Mh), W
u
±(Mh), which have the

structure S3 × R.
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Flow Near Equilibria
•B : bounded orbits (periodic/quasi-periodic): S3 (3-sphere)

•A : asymptotic orbits to 3-sphere: S3 × I (“tubes”)

•T : transit and NT : non-transit orbits.
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Flow Near Equilibria
•B : bounded orbits (periodic/quasi-periodic): S3 (3-sphere)

•A : asymptotic orbits to 3-sphere: S3 × I (“tubes”)

•T : transit and NT : non-transit orbits.
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Transport Between Realms
� Asymptotic orbits form 4D invariant manifold tubes

(S3 × I) in 5D energy surface.

� red = unstable, green = stable
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Transport Between Realms
• These manifold tubes play an important role in governing what

orbits approach or depart from a moon (transit orbits)

• and orbits which do not (non-transit orbits)

• transit possible for objects “inside” the tube, otherwise no
transit — this is important for transport issues
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Transport Between Realms
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Transport Between Realms
• Transit orbits can be found using a Poincaré section transver-

sal to a tube.

Poincare

Section

Tube
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Construction of Trajectories
� One can systematically construct new trajectories, which

use little fuel.

• by linking stable and unstable manifold tubes in the right order

• and using Poincaré sections to find trajectories “inside” the
tubes

� One can construct trajectories involving multiple 3-body
systems.
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Construction of Trajectories
• For a single 3-body system, we wish to link invariant manifold

tubes to construct an orbit with a desired itinerary

• Construction of (X ; M, I) orbit.
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The tubes connecting the X,M , and I regions.
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Construction of Trajectories
• First, integrate two tubes until they pierce a common Poincaré
section transversal to both tubes.

• Second, pick a point in the region of intersection and integrate
it forward and backward.
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Construction of Trajectories
• Integrate two tubes

• Integrate a point in the region of intersection
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Section

Tube A

Tube B
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Construction of Trajectories
•Planar: tubes (S × I) separate transit/non-transit orbits.

•Red curve (S1) : slice of L2 unstable manifold
Green curve (S1) : slice of L1 stable manifold

• Any point inside the intersection region ∆M is a (X ; M, I) orbit.

∆M = (X;M,I)

Intersection Region
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Construction of Trajectories
• Spatial: Invariant manifold tubes (S3 × I)

• Poincaré slice is a topological 3-sphere S3 in R4.

◦ S3 looks like disk × disk: ξ2 + ξ̇2 + η2 + η̇2 = r2 = r2
ξ + r2

η

• Find (X ; M) orbit.
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Construction of Trajectories
• Similarly, while the cut of the stable manifold tube is S3, its

projection on (y, ẏ) plane is a curve for z = c, ż = 0.

• Any point inside this curve is a (M, I) orbit.

• Hence, any point inside the intersection region ∆M is a
(X ; M, I) orbit.
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Construction of Trajectories
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Construction of Trajectories
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Connecting Orbits
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Tours of Jupiter’s Moons

�Tours of planetary satellite systems.

� Example 1: Europa → Io → Jupiter
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Tours of Jupiter’s Moons
� Example 2: Ganymede → Europa → injection into

Europa orbit
Ganymede's orbit

Jupiter
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Tours of Jupiter’s Moons
• The Petit Grand Tour can be constructed as follows:

◦ Approximate 4-body system as 2 nested 3-body systems.

◦ Choose an appropriate Poinaré section.

◦ Link the invariant manifold tubes in the proper order.

◦ Integrate initial condition (patch point) in the 4-body model.
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The End
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