

Invariant Manifolds, Material Transport and Space Mission Design

Shane D. Ross

Control and Dynamical Systems, Caltech

Candidacy Exam, July 27, 2001

Acknowledgements

- W. Koon, M. Lo, J. Marsden
- H. Poincaré, J. Moser
- C. Conley, R. McGehee
- C. Simó, J. Llibre, R. Martinez
- E. Belbruno, B. Marsden, J. Miller
- G. Gómez, J. Masdemont
- □ K. Howell, B. Barden, R. Wilson
- L. Petzold, S. Radu

Outline

Theme

Using dynamical systems theory for understanding solar system dynamics and identifying useful orbits for space missions.

Outline

Theme

Using dynamical systems theory for understanding solar system dynamics and identifying useful orbits for space missions.

Current research importance

development of some NASA mission trajectories, such as the *Genesis Discovery Mission* to be launched Monday

Outline

Theme

Using dynamical systems theory for understanding solar system dynamics and identifying useful orbits for space missions.

Current research importance

- development of some NASA mission trajectories, such as the Genesis Discovery Mission to be launched Monday
- of current astrophysical interest for understanding the transport of solar system material (eg, how ejecta from Mars gets to Earth, etc.)

Genesis Discovery Mission

Genesis will collect solar wind samples at the Sun-Earth L1 and return them to Earth.

It was the first mission designed start to finish using dynamical systems theory.

Topics:

□ solar system dynamics (eg, dynamics of comets)

- □ solar system dynamics (eg, dynamics of comets)
- □ the role of the three and four body problems

Topics:

solar system dynamics (eg, dynamics of comets)
 the role of the three and four body problems
 space mission trajectory design

- □ solar system dynamics (eg, dynamics of comets)
- □ the role of the three and four body problems
- space mission trajectory design
 - Petit Grand Tour of Jupiter's moons

- □ solar system dynamics (eg, dynamics of comets)
- □ the role of the three and four body problems
- space mission trajectory design
 - Petit Grand Tour of Jupiter's moons
 - low energy transfer from Earth to Moon

- □ solar system dynamics (eg, dynamics of comets)
- □ the role of the three and four body problems
- space mission trajectory design
 - Petit Grand Tour of Jupiter's moons
 - low energy transfer from Earth to Moon
 - Earth-Moon L1 Gateway station

- □ solar system dynamics (eg, dynamics of comets)
- □ the role of the three and four body problems
 - space mission trajectory design
 - Petit Grand Tour of Jupiter's moons
 - low energy transfer from Earth to Moon
 - Earth-Moon L1 Gateway station
- optimal control

- □ solar system dynamics (eg, dynamics of comets)
- □ the role of the three and four body problems
 - space mission trajectory design
 - Petit Grand Tour of Jupiter's moons
 - low energy transfer from Earth to Moon
 - Earth-Moon L1 Gateway station
- optimal control
 - trajectory correction maneuvers for *Genesis*

Jupiter Comets

□ We consider the historical record of the comet Oterma from 1910 to 1980

- first in an inertial frame
- then in a rotating frame
- a special case of pattern evocation

similar pictures exist for many other comets

Jupiter Comets

• Rapid transition: outside to inside Jupiter's orbit.

- Captured temporarily by Jupiter during transition.
- Exterior (2:3 resonance) to interior (3:2 resonance).

x (inertial frame)

Viewed in Rotating Frame

Oterma's orbit in rotating frame with some invariant manifolds of the 3-body problem superimposed.

Viewed in Rotating Frame

oterma-rot.qt

Circular restricted problem

the two primary bodies move in circles; the much smaller third body moves in the gravitational field of the primaries, without affecting them

Circular restricted problem

- the two primary bodies move in circles; the much smaller third body moves in the gravitational field of the primaries, without affecting them
- □ the two primaries could be the Sun and Earth, or Earth and Moon, or the Sun and Jupiter, etc.
- □ the smaller body could be a spacecraft, comet, or asteroid

Circular restricted problem

- the two primary bodies move in circles; the much smaller third body moves in the gravitational field of the primaries, without affecting them
- □ the two primaries could be the Sun and Earth, or Earth and Moon, or the Sun and Jupiter, etc.
- □ the smaller body could be a spacecraft, comet, or asteroid
- we consider the planar and spatial problems
- □ there are five equilibrium points in the rotating frame, places of balance which generate interesting dynamics

- 3 unstable points on line joining two main bodies L_1, L_2, L_3
- 2 stable points at $\pm 60^{\circ}$ along the circular orbit L_4, L_5

Equilibrium points

-] orbits exist around L_1 and L_2 ; both periodic and quasiperiodic
 - Lyapunov, halo and Lissajous orbits

one can draw the invariant manifolds assoicated to L_1 (and L_2) and the orbits surrounding them

these invariant manifolds play a key role in what follows

Equations of motion:

$$\ddot{x} - 2\dot{y} = -U_x^{\text{eff}}, \quad \ddot{y} + 2\dot{x} = -U_y^{\text{eff}}$$

where

$$U^{\text{eff}} = -\frac{(x^2 + y^2)}{2} - \frac{1 - \mu}{r_1} - \frac{\mu}{r_2}.$$

 \Box Have a first integral, the Hamiltonian energy, given by $E(x,y,\dot{x},\dot{y})=rac{1}{2}(\dot{x}^2+\dot{y}^2)+U^{\mathrm{eff}}(x,y).$

Equations of motion:

$$\ddot{x} - 2\dot{y} = -U_x^{\text{eff}}, \quad \ddot{y} + 2\dot{x} = -U_y^{\text{eff}}$$

where

$$U^{\text{eff}} = -\frac{(x^2 + y^2)}{2} - \frac{1 - \mu}{r_1} - \frac{\mu}{r_2}.$$

 \Box Have a first integral, the Hamiltonian energy, given by $E(x,y,\dot{x},\dot{y})=\frac{1}{2}(\dot{x}^2+\dot{y}^2)+U^{\rm eff}(x,y).$

- Energy manifolds are 3-dimensional surfaces foliating the 4-dimensional phase space.
- □ This is for the planar problem, but the spatial problem is similar.

Regions of Possible Motion

Effective potential

□ In a rotating frame, the equations of motion describe a particle moving in an effective potential plus a magnetic field (goes back to work of Jacobi, Hill, etc).

Invariant manifolds of L_1/L_2 orbits

 \Box red = unstable, green = stable

- These manifold tubes play an important role in what passes by Jupiter (transit orbits)
- □ and what bounces back (non-transit orbits)
- □ transit possible for objects "inside" the tube, otherwise no transit this is important for transport issues

- These manifold tubes play an important role in what passes by Jupiter (transit orbits)
- □ and what bounces back (non-transit orbits)
- □ transit possible for objects "inside" the tube, otherwise no transit this is important for transport issues
- earlier work in this direction by Conley and McGehee in the 1960's was extended by Koon, Lo, Marsden, and Ross [2000]
- \Box discovery of heteroclinic connection between L_1 and L_2 orbits was key

Theorem of global orbit structure

Says we can construct an orbit with any itinerary, eg $(\ldots, J, X, J, S, J, S, \ldots)$, where X, J and Sdenote the different regions (symbolic dynamics)

Construction of Trajectories

- One can systematically construct new trajectories, which use little fuel.
 - by linking stable and unstable manifold tubes in the right order
 - and using Poincaré sections to find trajectories "inside" the tubes
- One can construct trajectories involving multiple 3-body systems.

Tour of Jupiter's Moons

Tours of planetary satellite systems. □ Example 1: Europa → Io → Jupiter

Tour of Jupiter's Moons

Tour of Jupiter's Moons

pgt-3d-orbit-eu.qt

In 1991, a Japanese mission was "saved" by using a more fuel efficient way to the Moon (Miller and Belbruno)
 now a deeper understanding of this is emerging

- In 1991, a Japanese mission was "saved" by using a more fuel efficient way to the Moon (Miller and Belbruno)
 - now a deeper understanding of this is emerging
 - we approach this problem by
 - systematically implementing the view that the Sun-Earth-Moonspacecraft 4-body system can be regarded as two coupled 3body systems
 - and using invariant manifold ideas

- □ In 1991, a Japanese mission was "saved" by using a more fuel efficient way to the Moon (Miller and Belbruno)
 - now a deeper understanding of this is emerging
 - we approach this problem by
 - systematically implementing the view that the Sun-Earth-Moonspacecraft 4-body system can be regarded as two coupled 3body systems
 - and using invariant manifold ideas
 - we transfer from
 - the Sun-Earth-spacecraft system to
 - the Earth-Moon-spacecraft system

20% more fuel efficient than Apollo-like transfer

• but takes longer; a few months compared to a few days

Sun-Earth Rotating Frame

shoot the moon-rotating.qt

L1 Gateway Station

- \Box The Earth-Moon L_1 point is of interest as a permanent manned site.
- could operate as a transportation node for going to the moon, asteroids and planets
- \Box could provide servicing for telescopes at Sun-Earth L_2 point
- Efficient transfers can be created using the 3-body and invariant manifold techniques discussed

L1 Gateway Station

Below is a near-optimal transfer between the L_1 Gateway station and a Sun-Earth L_2 orbit

Optimal Control

Halo Orbit Insertion

- \Box After launch, the Genesis Discovery Mission will get onto the stable manifold of its eventual periodic orbit around L_1
- Launch velocity errors necessitate corrective maneuvers
- □ The software COOPT has been used to determine the necessary corrections (burn sizes and timing) systematically for a variety of launch conditions
- It gets one onto the orbit at the right time, while minimizing fuel consumption

Optimal Control

A very nice mixture of dynamical systems (providing guidance and first guesses) and optimal control

see Serban, Koon, Lo, Marsden, Petzold, Ross, and Wilson [2001]

Topics:

\Box extension of work to 3D

• symbolic dynamics in 3D, another theorem?

- extension of work to 3D
 - symbolic dynamics in 3D, another theorem?
- trajectory design
 - rendezvous problems (to/from Moon L1 Gateway)
 - optimal control
 - \circ using NTG, COOPT, etc.

- extension of work to 3D
 - symbolic dynamics in 3D, another theorem?
- trajectory design
 - rendezvous problems (to/from Moon L1 Gateway)
 - optimal control
 - o using NTG, COOPT, etc.
 - continuous (low) thrust

solar system dynamics

- probabilities of transition, capture, collision
 - comets between planets / Kuiper Belt
 - Shoemaker-Levy 9 type collisions (Chodas, et al.)
 - Earth collision, eg. KT impactor (Muller, et al.)
 - o impact ejecta between planets (Burns, Levison, et al.)

solar system dynamics

• probabilities of transition, capture, collision

comets between planets / Kuiper Belt

- Shoemaker-Levy 9 type collisions (Chodas, et al.)
- Earth collision, eg. KT impactor (Muller, et al.)
- o impact ejecta between planets (Burns, Levison, et al.)

large scale structure

 \circ dust clouds around stellar systems (for TPF)

Transport Between Planets

Comets transfer between the giant planets eg, jumping between "tubes" of Saturn and Jupiter

Minor Body Statistics

Computation of long term statistics is possible

• Compare manifold computation (green) with comet data

Impact Trajectories

Deeper understanding of low velocity impacts

• eg, *Shoemaker-Levy 9* and Earth crossers

Circumstellar Dust Clouds

Tools to use and develop

use knowledge of phase space geometry and ideas from transport theory (MacKay, Meiss, Wiggins, Rom-Kedar, Jaffé, Uzer, et al.)

Tools to use and develop

- use knowledge of phase space geometry and ideas from transport theory (MacKay, Meiss, Wiggins, Rom-Kedar, Jaffé, Uzer, et al.)
- \Box use graph theoretic methods (Dellnitz, et al.)

Tools to use and develop

- use knowledge of phase space geometry and ideas from transport theory (MacKay, Meiss, Wiggins, Rom-Kedar, Jaffé, Uzer, et al.)
- \Box use graph theoretic methods (Dellnitz, et al.)
- \Box use symplectic integrators (Wisdom, Marsden, $et \ al.$)
 - combine the above methods

References

- Gómez, G., W.S. Koon, M.W. Lo, J.E. Marsden, J. Masdemont and S.D. Ross
 [2001] *Invariant manifolds, the spatial three-body problem and space mission design.* AAS/AIAA Astrodynamics Specialist Conference.
- Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2001] Resonance and capture of Jupiter comets. Celestial Mechanics and Dynamical Astronomy, to appear.
- Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2001] *Low energy transfer to the Moon. Celestial Mechanics and Dynamical Astronomy.* to appear.
- Serban, R., Koon, W.S., M.W. Lo, J.E. Marsden, L.R. Petzold, S.D. Ross, and R.S. Wilson [2001] *Halo orbit mission correction maneuvers using optimal control.* Automatica, to appear.
- Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2000] Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10(2), 427–469.

The End