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� C. Conley, R. McGehee
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Outline

�Theme

� Using dynamical systems theory for understanding so-
lar system dynamics and identifying useful orbits for
space missions.

�Current research importance

� development of some NASA mission trajectories, such
as the Genesis Discovery Mission to be launched
Monday

� of current astrophysical interest for understanding the
transport of solar system material (eg, how ejecta from
Mars gets to Earth, etc.)
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Genesis Discovery Mission
� Genesis will collect solar wind samples at the Sun-

Earth L1 and return them to Earth.

� It was the first mission designed start to finish using
dynamical systems theory.
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Previous Work

�Topics:

� solar system dynamics (eg, dynamics of comets)

� the role of the three and four body problems

� space mission trajectory design
• Petit Grand Tour of Jupiter’s moons

• low energy transfer from Earth to Moon

• Earth-Moon L1 Gateway station

� optimal control
• trajectory correction maneuvers for Genesis
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Jupiter Comets
� We consider the historical record of the comet Oterma

from 1910 to 1980

• first in an inertial frame

• then in a rotating frame

• a special case of pattern evocation

� similar pictures exist for many other comets
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Jupiter Comets
• Rapid transition: outside to inside Jupiter’s orbit.

◦ Captured temporarily by Jupiter during transition.

◦ Exterior (2:3 resonance) to interior (3:2 resonance).
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Viewed in Rotating Frame
� Oterma’s orbit in rotating frame with some invariant

manifolds of the 3-body problem superimposed.
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Viewed in Rotating Frame

oterma-rot.qt
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Three-Body Problem

�Circular restricted problem

� the two primary bodies move in circles; the much
smaller third body moves in the gravitational field of
the primaries, without affecting them
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Three-Body Problem

�Circular restricted problem

� the two primary bodies move in circles; the much
smaller third body moves in the gravitational field of
the primaries, without affecting them

� the two primaries could be the Sun and Earth, or Earth
and Moon, or the Sun and Jupiter, etc.

� the smaller body could be a spacecraft, comet, or
asteroid

� we consider the planar and spatial problems

� there are five equilibrium points in the rotating frame,
places of balance which generate interesting dynamics
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Three-Body Problem
• 3 unstable points on line joining two main bodies – L1, L2, L3

• 2 stable points at ±60◦ along the circular orbit – L4, L5
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Three-Body Problem
� orbits exist around L1 and L2; both periodic and quasi-

periodic

• Lyapunov, halo and Lissajous orbits

� one can draw the invariant manifolds assoicated to L1

(and L2) and the orbits surrounding them

� these invariant manifolds play a key role in what follows
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Three-Body Problem
� Equations of motion:

ẍ− 2ẏ = −U eff
x , ÿ + 2ẋ = −U eff

y

where

U eff = −(x2 + y2)

2
− 1− µ

r1
− µ

r2
.

� Have a first integral, the Hamiltonian energy, given by

E(x, y, ẋ, ẏ) =
1

2
(ẋ2 + ẏ2) + U eff(x, y).
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Three-Body Problem
� Equations of motion:

ẍ− 2ẏ = −U eff
x , ÿ + 2ẋ = −U eff

y

where

U eff = −(x2 + y2)

2
− 1− µ

r1
− µ

r2
.

� Have a first integral, the Hamiltonian energy, given by

E(x, y, ẋ, ẏ) =
1

2
(ẋ2 + ẏ2) + U eff(x, y).

� Energy manifolds are 3-dimensional surfaces foliating
the 4-dimensional phase space.

� This is for the planar problem, but the spatial problem
is similar.
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Regions of Possible Motion

�Effective potential

� In a rotating frame, the equations of motion describe
a particle moving in an effective potential plus a mag-
netic field (goes back to work of Jacobi, Hill, etc).
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Transport Between Regions

� Invariant manifolds of L1/L2 orbits

� red = unstable, green = stable
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Transport Between Regions
� These manifold tubes play an important role in what

passes by Jupiter (transit orbits)

� and what bounces back (non-transit orbits)

� transit possible for objects “inside” the tube, otherwise
no transit — this is important for transport issues
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Transport Between Regions
� These manifold tubes play an important role in what

passes by Jupiter (transit orbits)

� and what bounces back (non-transit orbits)

� transit possible for objects “inside” the tube, otherwise
no transit — this is important for transport issues

� earlier work in this direction by Conley and McGehee
in the 1960’s was extended by Koon, Lo, Marsden, and
Ross [2000]

� discovery of heteroclinic connection between L1 and L2

orbits was key
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Transport Between Regions

�Theorem of global orbit structure

� says we can construct an orbit with any itinerary,
eg (. . . , J,X, J, S, J, S, . . .), where X, J and S
denote the different regions (symbolic dynamics)
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Construction of Trajectories
� One can systematically construct new trajectories, which

use little fuel.

• by linking stable and unstable manifold tubes in the right order

• and using Poincaré sections to find trajectories “inside” the
tubes

� One can construct trajectories involving multiple 3-body
systems.
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Tour of Jupiter’s Moons

�Tours of planetary satellite systems.

� Example 1: Europa → Io → Jupiter
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Tour of Jupiter’s Moons
� Example 2: Ganymede → Europa → injection into

Europa orbit
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Tour of Jupiter’s Moons

pgt-3d-orbit-eu.qt
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Earth to Moon Transfer
� In 1991, a Japanese mission was “saved” by using a more

fuel efficient way to the Moon (Miller and Belbruno)

� now a deeper understanding of this is emerging
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Earth to Moon Transfer
� In 1991, a Japanese mission was “saved” by using a more

fuel efficient way to the Moon (Miller and Belbruno)

� now a deeper understanding of this is emerging

� we approach this problem by

• systematically implementing the view that the Sun-Earth-Moon-
spacecraft 4-body system can be regarded as two coupled 3-
body systems

• and using invariant manifold ideas

� we transfer from

• the Sun-Earth-spacecraft system to

• the Earth-Moon-spacecraft system
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Earth to Moon Transfer
� 20% more fuel efficient than Apollo-like transfer

• but takes longer; a few months compared to a few days
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Earth to Moon Transfer

shootthemoon-rotating.qt
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L1 Gateway Station
� The Earth-Moon L1 point is of interest as a permanent

manned site.

� could operate as a transportation node for going to the
moon, asteroids and planets

� could provide servicing for telescopes at Sun-Earth L2

point

� Efficient transfers can be created using the 3-body and
invariant manifold techniques discussed
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L1 Gateway Station
� Below is a near-optimal transfer between the L1 Gate-

way station and a Sun-Earth L2 orbit
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Optimal Control

�Halo Orbit Insertion

� After launch, the Genesis Discovery Mission will get
onto the stable manifold of its eventual periodic orbit
around L1

� Launch velocity errors necessitate corrective maneuvers

� The software coopt has been used to determine the
necessary corrections (burn sizes and timing) systemat-
ically for a variety of launch conditions

� It gets one onto the orbit at the right time, while mini-
mizing fuel consumption
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Optimal Control
� A very nice mixture of dynamical systems (providing

guidance and first guesses) and optimal control
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Proposed Research

�Topics:

� extension of work to 3D
• symbolic dynamics in 3D, another theorem?

� trajectory design
• rendezvous problems (to/from Moon L1 Gateway)

• optimal control
◦ using NTG, COOPT, etc.

• continuous (low) thrust
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Proposed Research
� solar system dynamics
• probabilities of transition, capture, collision
◦ comets between planets / Kuiper Belt

◦ Shoemaker-Levy 9 type collisions (Chodas, et al.)

◦ Earth collision, eg. KT impactor (Muller, et al.)

◦ impact ejecta between planets (Burns, Levison, et al.)
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Proposed Research
� solar system dynamics
• probabilities of transition, capture, collision
◦ comets between planets / Kuiper Belt

◦ Shoemaker-Levy 9 type collisions (Chodas, et al.)

◦ Earth collision, eg. KT impactor (Muller, et al.)

◦ impact ejecta between planets (Burns, Levison, et al.)

• large scale structure
◦ dust clouds around stellar systems (for TPF)
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Transport Between Planets
� Comets transfer between the giant planets

eg, jumping between “tubes” of Saturn and Jupiter
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Minor Body Statistics
� Computation of long term statistics is possible

• Compare manifold computation (green) with comet data
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Impact Trajectories
� Deeper understanding of low velocity impacts

• eg, Shoemaker-Levy 9 and Earth crossers
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Circumstellar Dust Clouds

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x (AU, Sun-Earth Rotating Frame)

Earth

Sun

y
 (

A
U

, 
S

u
n
-E

ar
th

 R
o
ta

ti
n
g
 F

ra
m

e)

R
el

at
iv

e 
P

ar
ti
cl

e 
D

en
si

ty

Earth's
Orbit

(A

34



Proposed Research

�Tools to use and develop

� use knowledge of phase space geometry and ideas
from transport theory (MacKay, Meiss, Wiggins, Rom-
Kedar, Jaffé, Uzer, et al.)
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Proposed Research

�Tools to use and develop

� use knowledge of phase space geometry and ideas
from transport theory (MacKay, Meiss, Wiggins, Rom-
Kedar, Jaffé, Uzer, et al.)

� use graph theoretic methods (Dellnitz, et al.)

� use symplectic integrators (Wisdom, Marsden, et al.)
• combine the above methods
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