Invariant Manifolds,

Material Transport and

 Space Mission Design
Shane D. Ross

Control and Dynamical Systems, Caltech
Candidacy Exam, July 27, 2001

Acknowledgements

\square W. Koon, M. Lo, J. Marsden
\square H. Poincaré, J. Moser
\square C. Conley, R. McGehee
\square C. Simó, J. Llibre, R. Martinez
\square E. Belbruno, B. Marsden, J. Miller
\square G. Gómez, J. Masdemont
\square K. Howell, B. Barden, R. Wilson
\square L. Petzold, S. Radu

Outline

Theme
\square Using dynamical systems theory for understanding solar system dynamics and identifying useful orbits for space missions.

Outline

Theme

\square Using dynamical systems theory for understanding solar system dynamics and identifying useful orbits for space missions.

Current research importance
\square development of some NASA mission trajectories, such as the Genesis Discovery Mission to be launched Monday

Outline

Theme

\square Using dynamical systems theory for understanding solar system dynamics and identifying useful orbits for space missions.

Current research importance
\square development of some NASA mission trajectories, such as the Genesis Discovery Mission to be launched Monday
\square of current astrophysical interest for understanding the transport of solar system material (eg, how ejecta from Mars gets to Earth, etc.)

Genesis Discovery Mission

\square Genesis will collect solar wind samples at the SunEarth L1 and return them to Earth.
\square It was the first mission designed start to finish using dynamical systems theory.

Previous Work

Topics:
\square solar system dynamics (eg, dynamics of comets)

Previous Work

Topics:

\square solar system dynamics (eg, dynamics of comets)
\square the role of the three and four body problems

Previous Work

Topics:

\square solar system dynamics (eg, dynamics of comets)
\square the role of the three and four body problems
\square space mission trajectory design

Previous Work

Topics:
\square solar system dynamics (eg, dynamics of comets)
\square the role of the three and four body problems
\square space mission trajectory design

- Petit Grand Tour of Jupiter's moons

Previous Work

Topics:
\square solar system dynamics (eg, dynamics of comets)
\square the role of the three and four body problems
\square space mission trajectory design

- Petit Grand Tour of Jupiter's moons
- low energy transfer from Earth to Moon

Previous Work

Topics:
\square solar system dynamics (eg, dynamics of comets)
\square the role of the three and four body problems
\square space mission trajectory design

- Petit Grand Tour of Jupiter's moons
- low energy transfer from Earth to Moon
- Earth-Moon L1 Gateway station

Previous Work

Topics:
\square solar system dynamics (eg, dynamics of comets)
\square the role of the three and four body problems
\square space mission trajectory design

- Petit Grand Tour of Jupiter's moons
- low energy transfer from Earth to Moon
- Earth-Moon L1 Gateway station
\square optimal control

Previous Work

Topics:
\square solar system dynamics (eg, dynamics of comets)
\square the role of the three and four body problems
\square space mission trajectory design

- Petit Grand Tour of Jupiter's moons
- low energy transfer from Earth to Moon
- Earth-Moon L1 Gateway station
\square optimal control
- trajectory correction maneuvers for Genesis

Jupiter Comets

\square We consider the historical record of the comet Oterma from 1910 to 1980

- first in an inertial frame
- then in a rotating frame
- a special case of pattern evocation
similar pictures exist for many other comets

Jupiter Comets

- Rapid transition: outside to inside Jupiter's orbit.
- Captured temporarily by Jupiter during transition.
- Exterior (2:3 resonance) to interior (3:2 resonance).

Viewed in Rotating Frame

\square Oterma's orbit in rotating frame with some invariant manifolds of the 3-body problem superimposed.

Viewed in Rotating Frame

oterma-rot.qt

Three-Body Problem

Circular restricted problem
\square the two primary bodies move in circles; the much smaller third body moves in the gravitational field of the primaries, without affecting them
\square the two primary bodies move in circles; the much smaller third body moves in the gravitational field of the primaries, without affecting them
\square the two primaries could be the Sun and Earth, or Earth and Moon, or the Sun and Jupiter, etc.
\square the smaller body could be a spacecraft, comet, or asteroid

Three-Body Problem

Circular restricted problem

\square the two primary bodies move in circles; the much smaller third body moves in the gravitational field of the primaries, without affecting them
\square the two primaries could be the Sun and Earth, or Earth and Moon, or the Sun and Jupiter, etc.
\square the smaller body could be a spacecraft, comet, or asteroid
\square we consider the planar and spatial problems
\square there are five equilibrium points in the rotating frame, places of balance which generate interesting dynamics

Three-Body Problem

- 3 unstable points on line joining two main bodies - L_{1}, L_{2}, L_{3}
- 2 stable points at $\pm 60^{\circ}$ along the circular orbit - L_{4}, L_{5}

Equilibrium points
\square orbits exist around L_{1} and L_{2}; both periodic and quasiperiodic

- Lyapunov, halo and Lissajous orbits
\square one can draw the invariant manifolds assoicated to L_{1} (and L_{2}) and the orbits surrounding them
\square these invariant manifolds play a key role in what follows

Three-Body Problem

\square Equations of motion:

$$
\ddot{x}-2 \dot{y}=-U_{x}^{\text {eff }}, \quad \ddot{y}+2 \dot{x}=-U_{y}^{\text {eff }}
$$

where

$$
U^{\mathrm{eff}}=-\frac{\left(x^{2}+y^{2}\right)}{2}-\frac{1-\mu}{r_{1}}-\frac{\mu}{r_{2}} .
$$

\square Have a first integral, the Hamiltonian energy, given by

$$
E(x, y, \dot{x}, \dot{y})=\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)+U^{\mathrm{eff}}(x, y)
$$

Three-Body Problem

\square Equations of motion:

$$
\ddot{x}-2 \dot{y}=-U_{x}^{\text {eff }}, \quad \ddot{y}+2 \dot{x}=-U_{y}^{\text {eff }}
$$

where

$$
U^{\mathrm{eff}}=-\frac{\left(x^{2}+y^{2}\right)}{2}-\frac{1-\mu}{r_{1}}-\frac{\mu}{r_{2}} .
$$

\square Have a first integral, the Hamiltonian energy, given by

$$
E(x, y, \dot{x}, \dot{y})=\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)+U^{\mathrm{eff}}(x, y)
$$

\square Energy manifolds are 3-dimensional surfaces foliating the 4-dimensional phase space.
\square This is for the planar problem, but the spatial problem is similar.

Regions of Possible Motion

Effective potential

\square In a rotating frame, the equations of motion describe a particle moving in an effective potential plus a magnetic field (goes back to work of Jacobi, Hill, etc).

Effective potential

Level set shows accessible regions

Transport Between Regions

Invariant manifolds of L_{1} / L_{2} orbits

\square red $=$ unstable, green $=$ stable

Transport Between Regions

\square These manifold tubes play an important role in what passes by Jupiter (transit orbits)
\square and what bounces back (non-transit orbits)
transit possible for objects "inside" the tube, otherwise no transit - this is important for transport issues

Transport Between Regions

\square These manifold tubes play an important role in what passes by Jupiter (transit orbits)
\square and what bounces back (non-transit orbits)
\square transit possible for objects "inside" the tube, otherwise no transit - this is important for transport issues
\square earlier work in this direction by Conley and McGehee in the 1960's was extended by Koon, Lo, Marsden, and Ross [2000]
\square discovery of heteroclinic connection between L_{1} and L_{2} orbits was key

Transport Between Regions

Theorem of global orbit structure

\square says we can construct an orbit with any itinerary, eg (..., J, X, J, S, J, S, \ldots, where X, J and S denote the different regions (symbolic dynamics)

Construction of Trajectories

\square One can systematically construct new trajectories, which use little fuel.

- by linking stable and unstable manifold tubes in the right order - and using Poincaré sections to find trajectories "inside" the tubes
\square One can construct trajectories involving multiple 3-body systems.

Tour of Jupiter's Moons

Tours of planetary satellite systems.
\square Example 1: Europa \rightarrow lo \rightarrow Jupiter

1: Begin Tour
2: Europa Encounter
3: Jump Between Tubes
4: lo Encounter
5: Collide with Jupiter

Tour of Jupiter's Moons

\square Example 2: Ganymede \rightarrow Europa \rightarrow injection into Europa orbit

Tour of Jupiter's Moons

pgt-3d-orbit-eu.qt

Earth to Moon Transfer

\square In 1991, a Japanese mission was "saved" by using a more fuel efficient way to the Moon (Miller and Belbruno)
\square now a deeper understanding of this is emerging

Earth to Moon Transfer

\square In 1991, a Japanese mission was "saved" by using a more fuel efficient way to the Moon (Miller and Belbruno)
\square now a deeper understanding of this is emerging
\square we approach this problem by

- systematically implementing the view that the Sun-Earth-Moonspacecraft 4-body system can be regarded as two coupled 3body systems
- and using invariant manifold ideas

Earth to Moon Transfer

\square In 1991, a Japanese mission was "saved" by using a more fuel efficient way to the Moon (Miller and Belbruno)
\square now a deeper understanding of this is emerging
\square we approach this problem by

- systematically implementing the view that the Sun-Earth-Moonspacecraft 4-body system can be regarded as two coupled 3body systems
- and using invariant manifold ideas
\square we transfer from
- the Sun-Earth-spacecraft system to
- the Earth-Moon-spacecraft system

Earth to Moon Transfer

$\square 20 \%$ more fuel efficient than Apollo-like transfer

- but takes longer; a few months compared to a few days

Inertial Frame

Sun-Earth Rotating Frame

Earth to Moon Transfer

shootthemoon-rotating.qt

L1 Gateway Station

\square The Earth-Moon L_{1} point is of interest as a permanent manned site.
\square could operate as a transportation node for going to the moon, asteroids and planets
\square could provide servicing for telescopes at Sun-Earth L_{2} point
\square Efficient transfers can be created using the 3-body and invariant manifold techniques discussed

L1 Gateway Station

\square Below is a near-optimal transfer between the L_{1} Gateway station and a Sun-Earth L_{2} orbit

Moon L1 to Earth L2 Transfer:
Earth-Moon Rotating Frame

Moon L1 to Earth L2 Transfer:
Earth-Sun Rotating Frame

Optimal Control

Halo Orbit Insertion

\square After launch, the Genesis Discovery Mission will get onto the stable manifold of its eventual periodic orbit around L_{1}
\square Launch velocity errors necessitate corrective maneuvers
\square The software COOPT has been used to determine the necessary corrections (burn sizes and timing) systematically for a variety of launch conditions
\square It gets one onto the orbit at the right time, while minimizing fuel consumption

Optimal Control

\square A very nice mixture of dynamical systems (providing guidance and first guesses) and optimal control

see Serban, Koon, Lo, Marsden, Petzold, Ross, and Wilson [2001]

Proposed Research

Topics:
\square extension of work to 3D
symbolic dynamics in 3D, another theorem?

Proposed Research

Topics:
\square extension of work to 3D

- symbolic dynamics in 3D, another theorem?
\square trajectory design
- rendezvous problems (to/from Moon L1 Gateway)
- optimal control
\circ using NTG, COOPT, etc.

Proposed Research

Topics:
\square extension of work to 3D

- symbolic dynamics in 3D, another theorem?
\square trajectory design
- rendezvous problems (to/from Moon L1 Gateway)
- optimal control
\circ using NTG, COOPT, etc.
- continuous (low) thrust

Proposed Research

solar system dynamics

- probabilities of transition, capture, collision
- comets between planets / Kuiper Belt
- Shoemaker-Levy 9 type collisions (Chodas, et al.)
- Earth collision, eg. KT impactor (Muller, et al.)
- impact ejecta between planets (Burns, Levison, et al.)

Proposed Research

\square solar system dynamics

- probabilities of transition, capture, collision
- comets between planets / Kuiper Belt
- Shoemaker-Levy 9 type collisions (Chodas, et al.)
- Earth collision, eg. KT impactor (Muller, et al.)
- impact ejecta between planets (Burns, Levison, et al.)
- large scale structure
- dust clouds around stellar systems (for TPF)

Transport Between Planets

\square Comets transfer between the giant planets eg, jumping between "tubes" of Saturn and Jupiter

Minor Body Statistics

\square Computation of long term statistics is possible

- Compare manifold computation (green) with comet data

Impact Trajectories

\square Deeper understanding of low velocity impacts

- eg, Shoemaker-Levy 9 and Earth crossers

Example Collision Trajectory

Circumstellar Dust Clouds

Proposed Research

Tools to use and develop
\square use knowledge of phase space geometry and ideas from transport theory (MacKay, Meiss, Wiggins, RomKedar, Jaffé, Uzer, et al.)

Proposed Research

Tools to use and develop
\square use knowledge of phase space geometry and ideas from transport theory (MacKay, Meiss, Wiggins, RomKedar, Jaffé, Uzer, et al.)
\square use graph theoretic methods (Dellnitz, et al.)

Proposed Research

Tools to use and develop
\square use knowledge of phase space geometry and ideas from transport theory (MacKay, Meiss, Wiggins, RomKedar, Jaffé, Uzer, et al.)
\square use graph theoretic methods (Dellnitz, et al.)
\square use symplectic integrators (Wisdom, Marsden, et al.)

- combine the above methods

References

- Gómez, G., W.S. Koon, M.W. Lo, J.E. Marsden, J. Masdemont and S.D. Ross [2001] Invariant manifolds, the spatial three-body problem and space mission design. AAS/AIAA Astrodynamics Specialist Conference.
- Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2001] Resonance and capture of Jupiter comets. Celestial Mechanics and Dynamical Astronomy, to appear.
- Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2001] Low energy transfer to the Moon. Celestial Mechanics and Dynamical Astronomy. to appear.
- Serban, R., Koon, W.S., M.W. Lo, J.E. Marsden, L.R. Petzold, S.D. Ross, and R.S. Wilson [2001] Halo orbit mission correction maneuvers using optimal control. Automatica, to appear.
- Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2000] Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10(2), 427-469.

The End

