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Overview

�Transport theory

� Time-independent Hamiltonian systems

� with 2 degrees of freedom

� with 3 (or N) degrees of freedom
• Example: restricted three-body problem

� Some notes on computation
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Chaotic Dynamics
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Transport Theory

�Chaotic dynamics
=⇒ statistical methods
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Transport Theory

�Chaotic dynamics
=⇒ statistical methods

�Transport theory

� Motion of ensembles of trajectories in phase space

� Asks: How long to move from one region to another?

� Determine transition probabilities, escape rates

� Applications:
• Atomic ionization rates

• Chemical reaction rates

• Comet transition rates

• Asteroid collision probabilities
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Partition the Phase Space
“Reactants” “Products”
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Partition the Phase Space

�Systems with potential barriers
• Electron near a nucleus

Nucleus

"Bound" "Free"

Potential Configuration Space
(Rotating Frame)
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Partition the Phase Space
• Comet near the Sun and Jupiter

Ueff

JupiterSun

Potential Configuration Space
(Rotating Frame)
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Partition the Phase Space

�Partition is specific to problem

� We desire a way of describing dynamical boundaries
that represent the “frontier” between qualitatively
different types of behavior

8



Partition the Phase Space

�Partition is specific to problem

� We desire a way of describing dynamical boundaries
that represent the “frontier” between qualitatively
different types of behavior

�Example: motion of comet

� motion around the Sun

� motion around Jupiter
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Statement of Problem
� Suppose we study the motion on a manifold M
� Suppose M is partitioned into disjoint regions

Ri, i = 1, . . . , NR,

such that

M =

NR⋃
i=1

Ri.

� To keep track of the initial condition of a point, we say
that initially (at t = 0) region Ri is uniformly covered
with species Si.

� Thus, species type of a point indicates the region in
which it was located initially.
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Statement of Problem
� Statement of the transport problem:

Describe the distribution of species
Si, i = 1, . . . , NR, throughout the regions
Rj, j = 1, . . . , NR, for any time t > 0.

R1

R2

R3

R4
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Statement of Problem
� Some quantities we would like to compute are:

• Ti,j(t) = the total amount of species Si contained
in region Rj at time t

• Fi,j(t) =
dTi,j

dt (t) = the flux of species Si into
region Rj at time t

R1

R2

R3

R4
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Hamiltonian Systems

�Time-independent Hamiltonian H(q, p)

� N degrees of freedom

� Motion constrained to a (2N − 1)-dimensional
energy surface ME corresponding to a value
H(q, p) = E = constant

� Symplectic area is conserved along the flow∮
L
p · dq =

∫
A

dp ∧ dq = constant
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Symplectic Area Conserved

N∑
i=1

σi

∫
Ai

dpidqi = constant on an energy surface
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Poincaré Section
� Suppose there is another (2N − 1)-dimensional

surface Q that is transverse (i.e., nowhere parallel) to
the flow in some local region.

� The Poincaré section S is the (2N − 2)-dimensional
intersection of ME with Q.
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Example for N = 2

�Circular restricted 3-body prob. (2D)

H =
1

2
((px + y)2 + (py − x)2) + U eff(x, y)

Sun Jupiter

y

x

CometRotating
Frame 

Ueff

Position Space Effective Potential
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3-Body Problem (2D)

�Look at fixed energy
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3-Body Problem (2D)

�Partition the energy surface

S JL1 L2

Exterior
Region (X)

Interior (Sun)
 Region (S)

Jupiter
Region (J)

Forbidden
Region

Position Space Projection

17



3-Body Problem (2D)

�Look at motion near “saddle points”
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Potential Barriers
� Hamiltonian systems with potential barriers give rise to

“saddle points” whose local form is given by

H(q, p) =
ω

2
(q2

1 + p2
1) + λq2p2, (1)

i.e., linearized vector field has eigenvalues ±iω, ±λ.

� Moser [1958] showed that the qualitative behavior of
(1) carries over to the full nonlinear equations.

� In particular, the flow of (1) has form center × saddle.
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Local Dynamics

� For fixed energy H = h, energy surface ' S2 × R.

� Other constants of motion: I1 = q2
1 + p2

1 and I2 = q2p2.

1
p

q
1

X

2
p

q
2

� Normally hyperbolic invariant manifold at q2 = p2 = 0,
i.e.,

Mh =
ω

2
(q2

1 + p2
1) = h > 0.

Note that Mh ' S1, a periodic orbit.
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Local Dynamics
� Four cylinders of asymptotic orbits: the stable and

unstable manifolds W s
±(Mh), W

u
±(Mh).
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Transit and Nontransit Orbits
� Cylinders separate transit from nontransit orbits.

� In three-body problem:

• These manifold tubes play an important role in what passes
by Jupiter (transit orbits)

• and what bounces back (non-transit orbits)

• transit possible for objects “inside” the tube, otherwise no
transit — this is important for transport issues
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Tubes in the 3-Body Problem
� Stable and unstable manifold tubes

• Control transport through the potential barrier.
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Flux

�Tubes of transit orbits are the relevant
objects to study

� Tubes determine the flux between regions Fi,j(t).

� Note, net flux is zero for volume-preserving motion,
so we consider the one-way flux.

� Example: FJ,S(t) = volume of trajectories that escape
from the Jupiter region into the Sun region per unit
time.
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Transition Probabilities

�Fluxes give rates and probabilities

� Recently, Jaffé, Ross, Lo, Marsden, Farrelly, and Uzer
[2002] computed the rate of escape of asteroids tem-
porarily captured by Mars.

� Theory and numerical simulations agree well.
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Transition Probabilities
� Monte Carlo simultion (dashed) and theory (solid)
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Transition Probabilities

�More exotic transport between regions

� Look at the intersections between the interior of sta-
ble and unstable tubes on the same energy surface.

� Could be from different potential barrier saddles.

Poincare

Section

Tube A

Tube B
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Transition Probabilities
� Example: Comet transport between outside and inside

of Jupiter
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Transition Probabilities
� Look at Poincaré section intersected by both tubes.

� Choosing surface {x = constant; px < 0}, we look at
the canonical plane (y, py).
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Transition Probabilities
� Relative canonical area gives relative volume of orbits.

� Can be interpreted as the probability of transition
from one region to another.
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Mixing
� By keeping track of the intersections of the tubes, one

can describe the mixing of different regions (Ti,j(t)).

• It can get messy fast!

(from Jaffé, Farrelly and Uzer [1999])
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Some Notes on Computation

�Computationally challenging!

�Periodic orbits

� high order analytic expansion (see Llibre et al., 1985)

� normal form theory

� numerical continuation (AUTO2000 software)
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Some Notes on Computation

�Stable and unstable manifolds

� Suppose ODE in Rn of form

ẋ = f (x)

with periodic solution x̄(t) of period T .

� The variational equations are linearized equations
for variations δx̄ about x̄:

δ̇x̄(t) = Df (x̄(t))δx̄(t)

= A(t)δx̄(t),

where A(t) is an n× n matrix of period T .
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Some Notes on Computation
� Solutions are known to be of the form

δx̄(t) = Φ(t, 0)δx̄(0),

where Φ(t, 0) is the state transition matrix (STM)
from time 0 to t.

� The STM along a reference orbit is computed by
numerically integrating n(n + 1) ODEs:

˙̄x = f (x̄),

Φ̇(t, 0) = A(t)Φ(t, 0),

with initial conditions:

x̄(0) = x̄0,

Φ(0, 0) = I6.
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Some Notes on Computation
� The monodromy matrix Φ(T, 0) has an unstable

and stable eigenvector. We can numerically integrate
this linear approximation to the unstable (or stable)
direction to obtain the unstable (or stable) manifold.
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Some Notes on Computation

�Poincaré Sections

� This set of solutions approximating the unstable mani-
fold can be numerically integrated until some stopping
condition is reached (e.g., xj = constant).

Poincare

Section

Tube

36



Some Notes on Computation
� Problems:

How to handle non-transversal intersections
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N = 3 or More

�Extend to N ≥ 3 degrees of freedom

� Near equilibrium point, suppose linearized
Hamiltonian vector field has eigenvalues
±iωj, j = 1, . . . , N − 1, and ±λ.

� Assume the complexification is diagonalizable.

� Hamiltonian normal form theory tranforms
Hamiltonian into a lowest order form:

H(q, p) =

N−1∑
i=1

ωi

2

(
p2

i + q2
i

)
+ λqNpN .

� Equilibrium point is of type
center× · · · × center× saddle (N − 1 centers).
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N = 3 or More

�Multidimensional “saddle point”

� For fixed energy H = h, energy surface ' S2N−2 × R.

� Constants of motion:
Ij = q2

j + p2
j, j = 1, . . . , N − 1, and IN = qNpN .
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N = 3 or More
� Normally hyperbolic invariant manifold

at qN = pN = 0,

Mh =

n−1∑
i=1

ωi

2

(
p2

i + q2
i

)
= h > 0.

Note that Mh ' S2N−3, not a single trajectory.

� Four “cylinders” of asymptotic orbits: the stable and
unstable manifolds W s

±(Mh), W
u
±(Mh), which have the

structure S2N−3 × R.
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N = 3 or More
� Transport between regions is mediated by the

“higher dimensional tubes”

� Compute fluxes, transition probabilities, etc.

Σ
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N = 3 or More
• Example: restricted three-body problem (3D)
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Future Directions

�Future Directions

� Compute fluxes, transition probabilities
in 2 and 3 degree of freedom systems

� Add small dissipation
◦ Can Hamiltonian methods still be used?

� Determine statistical laws for astronomical systems
◦ Over a range of energies

◦ Is ergodic assumption valid?

◦ Obtain useful asteroid collision probabilities, etc.

� Combine with control for spacecraft navigation
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