Transport in Hamiltonian Systems With Two or More Degrees of Freedom *Shane Ross*

Wang Koon and Jerry Marsden (CDS), Martin Lo (JPL)

April 18, 2001

Control and Dynamical Systems

Outline

Transport theory

 \Box Time-independent Hamiltonian systems

 \Box with 2 degrees of freedom

- \Box with 3 (or N) degrees of freedom
 - Example: restricted three-body problem

Chaotic Dynamics

Version: October 7, 2000; Typeset on April 17, 2001,12:19

Transport Theory

- Chaotic dynamics \rightarrow statistical methods
- Transport theory
 - \Box Motion of ensembles of trajectories in phase space
 - \Box Asks: How long to move from one region to another?
 - Determine transition probabilities, correlation functions
 - \Box Applications:
 - Atomic ionization rates
 - Chemical reaction rates
 - Comet transition rates
 - Asteroid collision probabilities

Version: October 7, 2000; Typeset on April 17, 2001,12:19

Systems with potential barriers

• Electron near a nucleus

• Comet near the Sun and Jupiter

Partition is specific to problem

□ We desire a way of describing dynamical boundaries that represent the "frontier" between qualitatively different types of behavior

Example: motion of comet

- \Box motion around Sun
- \Box motion around Jupiter

Statement of Problem

 \Box Suppose we study the motion on a manifold \mathcal{M} \Box Suppose \mathcal{M} is partitioned into disjoint regions

$$R_i, i=1,\ldots,N_R,$$

such that

$$\mathcal{M} = igcup_{i=1}^{N_R} R_i.$$

- □ To keep track of the initial condition of a point, we say that *initially* (at t = 0) region R_i is uniformly covered with species S_i .
- \Box Thus, species type of a point indicates the region in which it was located initially.

Statement of Problem

Statement of the transport problem: **Describe the distribution of species** $S_i, i = 1, ..., N_R$, throughout the regions $R_j, j = 1, ..., N_R$, for any time t > 0.

Version: October 7, 2000; Typeset on April 17, 2001,12:19

Statement of Problem

\Box Some quantities we would like to compute are:

- $T_{i,j}(t)$ = the total amount of species S_i contained in region R_j at time t
- $F_{i,j}(t) = \frac{dT_{i,j}}{dt}(t) =$ the flux of species S_i into region R_j at time t

Version: October 7, 2000; Typeset on April 17, 2001,12:19

Hamiltonian Systems

Time-independent Hamiltonian H(q, p)

- $\Box N$ degrees of freedom
- \Box Motion constrained to a (2N 1)-dimensional energy surface \mathcal{M}_E corresponding to a value H(q, p) = E = constant

 \Box Symplectic area is conserved along the flow

$$\oint_{\mathcal{L}} p \cdot dq = \int_{\mathcal{A}} dp \wedge dq = \text{constant}$$

Symplectic Area Conserved

$$\sum_{i=1}^{N} \sigma_i \int_{\mathcal{A}^i} dp_i dq^i = \text{constant on an energy surface}$$

Version: October 7, 2000; Typeset on April 17, 2001,12:19

Poincaré Section

□ Suppose there is another (2N - 1)-dimensional surface Q that is transverse (i.e., nowhere parallel) to the flow in some local region.
□ The Poincaré section S is the (2N - 2)-dimensional intersection of M_E with Q.

Version: October 7, 2000; Typeset on April 17, 2001,12:19

Example for N = 2

Circular restricted 3-body prob. (2D)

$$H = \frac{1}{2}((p_x + y)^2 + (p_y - x)^2) + U^{\text{eff}}(x, y)$$

Version: October 7, 2000; Typeset on April 17, 2001,12:19

3-Body Problem (2D)

Look at fixed energy

Position Space Projections

3-Body Problem (2D)

Partition the energy surface

Position Space Projection

3-Body Problem (2D)

Look at motion near "saddle points"

Position Space Projection

Potential Barriers

□ Hamiltonian systems with potential barriers give rise to "saddle points" whose local form is given by

$$H(q,p) = \frac{\omega}{2}(q_1^2 + p_1^2) + \lambda q_2 p_2, \qquad (1)$$

i.e., linearized vector field has eigenvalues $\pm i\omega$, $\pm\lambda$.

- □ Moser [1958] showed that the qualitative behavior of
 (1) carries over to the full nonlinear equations.
- \Box In particular, the flow of (1) has form center \times saddle.

Local Dynamics

 \Box For fixed energy H = h, energy surface $\simeq S^2 \times \mathbb{R}$. \Box Other constants of motion: $I_1 = q_1^2 + p_1^2$ and $I_2 = q_2 p_2$.

 \Box Normally hyperbolic invariant manifold at $q_2 = p_2 = 0$, i.e.,

$$\mathcal{M}_h = \frac{\omega}{2}(q_1^2 + p_1^2) = h > 0.$$

Note that $\mathcal{M}_h \simeq S^1$, a periodic orbit.

Local Dynamics

Four cylinders of asymptotic orbits: the stable and unstable manifolds $W^s_{\pm}(\mathcal{M}_h), W^u_{\pm}(\mathcal{M}_h)$.

Stable Manifold (orbits move toward the periodic orbit)

Unstable Manifold (orbits move away from the periodic orbit)

Transit and Nontransit Orbits

Cylinders separate transit from nontransit orbits.
Define mappings between "bounding spheres" on either side of the potential barrier.

Tubes in the 3-Body Problem

□ Stable and unstable manifold tubes

• Control transport through the potential barrier.

Flux

Tubes of transit orbits are the relevant objects to study

- \Box Tubes determine the flux between regions $F_{i,j}(t)$.
- □ Note, net flux is zero for volume-preserving motion, so we consider the one-way flux.
 - Example: $F_{J,S}(t)$ = volume of trajectories that escape from the Jupiter region into the Sun region per unit time.

More exotic transport between regions

Look at the intersections between the interior of stable and unstable tubes on the same energy surface.
Could be from different potential barrier saddles.

• Example: Comet transport between outside and inside of Jupiter

Look at Poincaré section intersected by both tubes.
 Choosing surface {x = constant; p_x < 0}, we look at the canonical plane (y, p_y).

Version: October 7, 2000; Typeset on April 17, 2001,12:19

Relative canonical area gives relative volume of orbits.
Under certain ergodic assumptions, the relative volume can be interpreted as the probability of transition.

Canonical Plane (y, p_y)

Mixing

By keeping track of the intersections of the tubes, one can describe the mixing of different regions $(T_{i,j}(t))$.

• It can get messy fast!

(from Jaffé, Farrelly and Uzer [1999])

Some Challenges

□ Computationally very challenging

 \Box How to handle non-transversal intersections

Extend to $N \ge 3$ degrees of freedom

- □ Near equilibrium point, suppose linearized Hamiltonian vector field has eigenvalues $\pm i\omega_j, j = 1, \ldots, N - 1$, and $\pm \lambda$.
- Assume the complexification is diagonalizable.Hamiltonian normal form theory tranforms

Hamiltonian into a lowest order form:

$$H(q, p) = \sum_{i=1}^{N-1} \frac{\omega_i}{2} \left(p_i^2 + q_i^2 \right) + \lambda q_N p_N.$$

 \Box Equilibrium point is of type center $\times \cdots \times$ center \times saddle (N - 1 centers).

Multidimensional "saddle point"

□ For fixed energy H = h, energy surface $\simeq S^{2N-2} \times \mathbb{R}$. □ Constants of motion: $I_j = q_j^2 + p_j^2, j = 1, \dots, N-1$, and $I_N = q_N p_N$.

The N Canonical Planes

Version: October 7, 2000; Typeset on April 17, 2001,12:19

 $\Box \text{ Normally hyperbolic invariant manifold}$ at $q_N = p_N = 0$,

$$\mathcal{M}_{h} = \sum_{i=1}^{n-1} \frac{\omega_{i}}{2} \left(p_{i}^{2} + q_{i}^{2} \right) = h > 0.$$

Note that $\mathcal{M}_h \simeq S^{2N-3}$, not a single trajectory.

□ Four "cylinders" of asymptotic orbits: the stable and unstable manifolds $W^s_{\pm}(\mathcal{M}_h), W^u_{\pm}(\mathcal{M}_h)$, which have the structure $S^{2N-3} \times \mathbb{R}$.

- □ Transport between regions is mediated by the "higher dimensional tubes"
- □ Compute fluxes, transition probabilities, etc.

• Example: restricted three-body problem (3D)

Version: October 7, 2000; Typeset on April 17, 2001,12:19

Future Directions

Future Directions

• Compute fluxes, transition probabilities in 2 and 3 degree of freedom systems

• Determine statistical laws

- For one energy
- Over a range of energies
- Is ergodic assumption valid?
- Equilibrium distribution?
- Relaxation time to equilibrium?

• Apply to astronomical and chemical systems

- Astronomy: Compute asteroid collision probabilities, "equilibrium" distribution of asteroids and comets
- Chemistry: Compute reaction rates

• Combine with control

References

- Gómez, G., W.S. Koon, M.W. Lo, J.E. Marsden, J. Masdemont and S.D. Ross [2001] Heteroclinic connections and material transport in the solar system, *in preparation*.
- Jaffé, C., D. Farrelly and T. Uzer [1999] Transition state in atomic physics, *Phys. Rev. A* 60(5), 3833–3850.
- Meiss, J.D. [1992] Symplectic maps, variational principles, and transport, *Rev. Mod. Phys.* 64(3), 795–848.
- Ozorio de Almeida, A.M., N. De Leon, M.A. Mehta and C.C. Marston [1990] Geometry and dynamics of stable and unstable cylinders in hamiltonian systems, *Physica D* 46, 265–285.
- Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2000] Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics, *Chaos* 10(2), 427–469.
- Wiggins, S. [1992] Chaotic Transport in Dynamical Systems, Springer-Verlag.
- Wiggins, S. [1994] Normally Hyperbolic Invariant Manifolds in Dynamical Systems, Springer-Verlag.