Transport in Hamiltonian Systems With Two or More Degrees of Freedom

Shane Ross

Wang Koon and Jerry Marsden (CDS), Martin Lo (JPL)
April 18, 2001

Outline

Transport theory
\square Time-independent Hamiltonian systems
\square with 2 degrees of freedom
\square with 3 (or N) degrees of freedom

- Example: restricted three-body problem

Chaotic Dynamics

\square Chaotic dynamics

 \rightarrow statistical methodsTransport theory
\square Motion of ensembles of trajectories in phase space
\square Asks: How long to move from one region to another?
\square Determine transition probabilities, correlation functions
\square Applications:

- Atomic ionization rates
- Chemical reaction rates
- Comet transition rates
- Asteroid collision probabilities

Partition the Phase Space

"Reactants"
"Products"

Partition the Phase Space

\square Systems with potential barriers

- Electron near a nucleus

Potential

Configuration Space

Partition the Phase Space

- Comet near the Sun and Jupiter

Potential

Configuration Space

Partition the Phase Space

Partition is specific to problem

\square We desire a way of describing dynamical boundaries that represent the "frontier" between qualitatively different types of behavior
\square Example: motion of comet
\square motion around Sun
\square motion around Jupiter

Statement of Problem

\square Suppose we study the motion on a manifold \mathcal{M}
\square Suppose \mathcal{M} is partitioned into disjoint regions

$$
R_{i}, i=1, \ldots, N_{R}
$$

such that

$$
\mathcal{M}=\bigcup_{i=1}^{N_{R}} R_{i}
$$

\square To keep track of the initial condition of a point, we say that initially (at $t=0$) region R_{i} is uniformly covered with species S_{i}.
\square Thus, species type of a point indicates the region in which it was located initially.

Statement of Problem

\square Statement of the transport problem:
Describe the distribution of species $S_{i}, i=1, \ldots, N_{R}$, throughout the regions $R_{j}, j=1, \ldots, N_{R}$, for any time $t>0$.

Statement of Problem

\square Some quantities we would like to compute are:

- $T_{i, j}(t)=$ the total amount of species S_{i} contained in region R_{j} at time t
- $F_{i, j}(t)=\frac{d T_{i, j}}{d t}(t)=$ the flux of species S_{i} into region R_{j} at time t

Hamiltonian Systems

Time-independent Hamiltonian $H(q, p)$
$\square N$ degrees of freedom
\square Motion constrained to a $(2 N-1)$-dimensional energy surface \mathcal{M}_{E} corresponding to a value $H(q, p)=E=\mathrm{constant}$
\square Symplectic area is conserved along the flow

$$
\oint_{\mathcal{L}} p \cdot d q=\int_{\mathcal{A}} d p \wedge d q=\mathrm{constant}
$$

Symplectic Area Conserved

$\sum_{i=1}^{N} \sigma_{i} \int_{\mathcal{A}^{i}} d p_{i} d q^{i}=$ constant on an energy surface

Poincaré Section

\square Suppose there is another $(2 N-1)$-dimensional surface \mathcal{Q} that is transverse (i.e., nowhere parallel) to the flow in some local region.
\square The Poincaré section \mathcal{S} is the $(2 N-2)$-dimensional intersection of \mathcal{M}_{E} with \mathcal{Q}.

Example for $N=2$

Circular restricted 3-body prob. (2D)

$$
H=\frac{1}{2}\left(\left(p_{x}+y\right)^{2}+\left(p_{y}-x\right)^{2}\right)+U^{\mathrm{eff}}(x, y)
$$

Position Space

Effective Potential

3-Body Problem (2D)

Look at fixed energy

Position Space Projections

3-Body Problem (2D)

\square Partition the energy surface

Position Space Projection

3-Body Problem (2D)

Look at motion near "saddle points"

Position Space Projection

Potential

\square Hamiltonian systems with potential barriers give rise to "saddle points" whose local form is given by

$$
\begin{equation*}
H(q, p)=\frac{\omega}{2}\left(q_{1}^{2}+p_{1}^{2}\right)+\lambda q_{2} p_{2} \tag{1}
\end{equation*}
$$

i.e., linearized vector field has eigenvalues $\pm i \omega, \pm \lambda$.
\square Moser [1958] showed that the qualitative behavior of (1) carries over to the full nonlinear equations.
\square In particular, the flow of (1) has form center \times saddle.

Local Dynamics

\square For fixed energy $H=h$, energy surface $\simeq S^{2} \times \mathbb{R}$.
\square Other constants of motion: $I_{1}=q_{1}^{2}+p_{1}^{2}$ and $I_{2}=q_{2} p_{2}$.

\square Normally hyperbolic invariant manifold at $q_{2}=p_{2}=0$, i.e.,

$$
\mathcal{M}_{h}=\frac{\omega}{2}\left(q_{1}^{2}+p_{1}^{2}\right)=h>0 .
$$

Note that $\mathcal{M}_{h} \simeq S^{1}$, a periodic orbit.

Local Dynamics

\square Four cylinders of asymptotic orbits: the stable and unstable manifolds $W_{ \pm}^{s}\left(\mathcal{M}_{h}\right), W_{ \pm}^{u}\left(\mathcal{M}_{h}\right)$.

Stable Manifold (orbits move toward the periodic orbit)

Unstable Manifold (orbits move away from the periodic orbit)

Transit and Nontransit Orbits

\square Cylinders separate transit from nontransit orbits.
\square Define mappings between "bounding spheres" on either side of the potential barrier.

Cross-section of Equilibrium Region

Equilibrium Region

Tubes in the 3-Body Problem

\square Stable and unstable manifold tubes

- Control transport through the potential barrier.

\square Tubes of transit orbits are the relevant

 objects to study\square Tubes determine the flux between regions $F_{i, j}(t)$.
\square Note, net flux is zero for volume-preserving motion, so we consider the one-way flux.

- Example: $F_{J, S}(t)=$ volume of trajectories that escape from the Jupiter region into the Sun region per unit time.

Transition Probablities

More exotic transport between regions

\square Look at the intersections between the interior of stable and unstable tubes on the same energy surface.
\square Could be from different potential barrier saddles.

Poincaré Section

Transition Probablities

- Example: Comet transport between outside and inside of Jupiter

Transition Probablities

\square Look at Poincaré section intersected by both tubes.
\square Choosing surface $\left\{x=\right.$ constant; $\left.p_{x}<0\right\}$, we look at the canonical plane $\left(y, p_{y}\right)$.

Position Space

Canonical Plane $\left(y, p_{y}\right)$

Transition Probablities

\square Relative canonical area gives relative volume of orbits.
\square Under certain ergodic assumptions, the relative volume can be interpreted as the probability of transition.

Canonical Plane $\left(y, p_{y}\right)$

Mixing

\square By keeping track of the intersections of the tubes, one can describe the mixing of different regions $\left(T_{i, j}(t)\right)$. - It can get messy fast!

(from Jaffé, Farrelly and Uzer [1999])

Some Challenges

\square Computationally very challenging
\square How to handle non-transversal intersections

$N=3$ or More

Extend to $N \geq 3$ degrees of freedom

\square Near equilibrium point, suppose linearized Hamiltonian vector field has eigenvalues $\pm i \omega_{j}, j=1, \ldots, N-1$, and $\pm \lambda$.
\square Assume the complexification is diagonalizable.
\square Hamiltonian normal form theory tranforms Hamiltonian into a lowest order form:

$$
H(q, p)=\sum_{i=1}^{N-1} \frac{\omega_{i}}{2}\left(p_{i}^{2}+q_{i}^{2}\right)+\lambda q_{N} p_{N}
$$

\square Equilibrium point is of type
center $\times \cdots \times$ center \times saddle $(N-1$ centers $)$.

$N=3$ or More

Multidimensional "saddle point"

\square For fixed energy $H=h$, energy surface $\simeq S^{2 N-2} \times \mathbb{R}$.
\square Constants of motion:
$I_{j}=q_{j}^{2}+p_{j}^{2}, j=1, \ldots, N-1$, and $I_{N}=q_{N} p_{N}$.

The N Canonical Planes
\square Normally hyperbolic invariant manifold at $q_{N}=p_{N}=0$,

$$
\mathcal{M}_{h}=\sum_{i=1}^{n-1} \frac{\omega_{i}}{2}\left(p_{i}^{2}+q_{i}^{2}\right)=h>0
$$

Note that $\mathcal{M}_{h} \simeq S^{2 N-3}$, not a single trajectory.
\square Four "cylinders" of asymptotic orbits: the stable and unstable manifolds $W_{ \pm}^{s}\left(\mathcal{M}_{h}\right), W_{ \pm}^{u}\left(\mathcal{M}_{h}\right)$, which have the structure $S^{2 N-3} \times \mathbb{R}$.

$N=3$ or More

\square Transport between regions is mediated by the "higher dimensional tubes"
\square Compute fluxes, transition probabilities, etc.

$N=3$ or More

- Example: restricted three-body problem (3D)

3D Position Space

Future Directions

\square Future Directions

- Compute fluxes, transition probabilities in 2 and 3 degree of freedom systems
- Determine statistical laws
- For one energy
- Over a range of energies
- Is ergodic assumption valid?
- Equilibrium distribution?
- Relaxation time to equilibrium?
- Apply to astronomical and chemical systems
- Astronomy: Compute asteroid collision probabilities, "equilibrium" distribution of asteroids and comets
- Chemistry: Compute reaction rates
- Combine with control

References

- Gómez, G., W.S. Koon, M.W. Lo, J.E. Marsden, J. Masdemont and S.D. Ross [2001] Heteroclinic connections and material transport in the solar system, in preparation.
- Jaffé, C., D. Farrelly and T. Uzer [1999] Transition state in atomic physics, Phys. Rev. A 60(5), 3833-3850.
- Meiss, J.D. [1992] Symplectic maps, variational principles, and transport, Rev. Mod. Phys. 64(3), 795-848.
- Ozorio de Almeida, A.M., N. De Leon, M.A. Mehta and C.C. Marston [1990] Geometry and dynamics of stable and unstable cylinders in hamiltonian systems, Physica D 46, 265-285.
- Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2000] Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics, Chaos 10(2), 427-469.
- Wiggins, S. [1992] Chaotic Transport in Dynamical Systems, SpringerVerlag.
- Wiggins, S. [1994] Normally Hyperbolic Invariant Manifolds in Dynamical Systems, Springer-Verlag.

