Resonance and Capture of Jupiter Comets

Shane Ross

Martin Lo (JPL), Wang Sang Koon and Jerrold Marsden (Caltech)

Control and Dynamical Systems California Institute of Technology

US-European Celestial Mechanics Workshop, 3-7 July 2000

shane@cds.caltech.edu

Acknowledgements

- H. Poincaré, J. Moser
- C. Conley, R. McGehee
- C. Simó, J. Llibre, R. Martinez
- E. Belbruno, B. Marsden, J. Miller
- G. Gómez, J. Masdemont
- K. Howell, R. Wilson and the Purdue group

Jupiter Comets: e.g., *Oterma*

- **Rapid transition** from **outside** to **inside** Jupiter's orbit.
- **Captured temporarily** by Jupiter during transition.
- Exterior (2:3 resonance). Interior (3:2 resonance).

x (inertial frame)

Previous Work

- Belbruno/B. Marsden [1997]
- Lo/Ross [1997] : Comets pass by $L_1 \ \mathcal{E} \ L_2$.
 - In Sun-Jupiter *rotating frame*, comets follow *stable & unstable invariant manifolds*.
- Works by Moser/Conley/McGehee. Llibre/Martinez/Simó [1985].

Flow Near L_1 and L_2

• *Energy value* > L_2 : *Hill's region* has *neck* about $L_1 \& L_2$.

- Comet makes transition through *equilibrium region* necks.
- Four orbit types: periodic, **asymptotic**, **transit** & **nontransit**.

Jupiter Comets Use Heteroclinic Connection

- Heteroclinic connection between L₁ & L₂ periodic orbits.
 Link with homoclinic orbits to make *chain*.
- Comets follow dynamical *channels* for rapid transition.

Jupiter Comets: Following Dynamical Channels

- Consider comet **Oterma** from 1910 to 1980.
 - Determine energy during transition.
 - Compute homoclinic-heteroclinic chain.
 - Overlay **chain** with **Oterma's** orbit (at right).

Jupiter Comets: Rapid Transition Mechanism

• Rapid transition between exterior/interior via

• **stable** & **unstable** manifold *tubes* which contain **transit** orbits.

- Jupiter region Poincaré section:
 - L_2 unstable tube intersects L_1 stable tube.
 - \circ Contains exterior \longrightarrow interior orbits.

Tubes and Resonance Transition

- Tubes are *transport mechanism* connecting interior and exterior Hill's regions.
- Connect mean motion resonances.
 - \circ e.g., *Oterma's* **2:3** \longrightarrow **3:2** transition.
- Can construct **Oterma**-like transition.

- Schematic of tube location. Poincaré sections are **solid lines**.
 - Stable manifolds in green,
 - **Unstable** manifolds in **red**.

• Interior region Poincaré section.

$\sqrt{$ Semimajor Axis

Look at Poincaré section of tubes in *exterior region*.
L₂ orbit stable & unstable manifolds.

• Exterior region Poincaré section.

 $\sqrt{}$ Semimajor Axis

- Transition resonances for **Oterma's** energy:
 - Interior: **3:2**
 - Exterior: 2:3
- $2:3 \longrightarrow 3:2$ connected via Jupiter region.

• Pick initial condition in $2:3 \rightarrow 3:2$ channel.

• Forward/backward integrate *Oterma*-like resonance transition.

Temporary Capture Around Jupiter

- Must come into Jupiter region via tubes for capture.
- Several revolutions possible before departing.

x (rotating frame)

Collision with Jupiter

• Some portion of tube intersects Jupiter.

• e.g., *Shoemaker-Levy* 9 simulation

Example Collision Trajectory

Further Work: Transport Throughout Solar System

More Information and References

- Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics, Chaos, vol. 10(2) [2000], pp. 427–469;
 - o http://www.cds.caltech.edu/~marsden/
 - Click on "current issue" of http://ojps.aip.org/chaos/
- Email: shane@cds.caltech.edu

Look at Poincaré section of tubes in *Jupiter region*.
 *L*₂ orbit **unstable** → *L*₁ orbit **stable** manifolds.

• Jupiter region Poincaré section:

• L_2 unstable tube intersects L_1 stable tube.

• Intersection region contains transit orbits:

 \circ exterior \longrightarrow interior

Connection Between Interior/Exterior Resonances

- Δ contains orbits in **2:3** \longrightarrow **3:2** transition.
- Comets, e.g. *Oterma*, pass through such regions.

