HELVPOLIS

The Next Giant Leap

Chad Kessens, Ryan McDaniel,
Melahn Parker, Shane Ross, Luke Voss

Heliopolis Mission

To build a profitable, self-sustaining foothold for humanity in space

Heliopolis:
 Space Business Park / Community

- Support several industries
- Solar power satellites (SPS)*
- Communications satellites
- Zero-gravity manufacturing
- Tourism
- Asteroid mining
- Capacity for growth (self-replication)
- Lunar L1 halo orbit
- Continuous sunlight
- Moon-viewing for tourists
- Necessary for future space infrastructure

Heliopolis Development Timeline

Lunar Mass Driver operational

Phase 0 (2020-2021)
 - Shanty Town Construction

- ISS-like modules to L1
- Mass driver to Moon
- 3-month crew rotations
- Cost: 35 B\$ (Y2K)
- People: 0-100

Earth
People and
Resources

Phase 1 (2021-2022)

- Begin Construction of Heliopolis
- Build first permanent habitation modules
- Construction materials from Moon
- 3-month crew rotations
- Cost: 27 B\$
- People: 100-115
- 0-5\% complete

Phase 2 (2022-2032)
 - Intermediate Construction Stage

- Permanent habitation
- Manufacture of SPSs/Comm
- Launch asteroid retriever
- Cost: 151 B\$
- Revenue: 343 B\$
- People: 115-341

Phase 3 (2032-2039)

- Final Construction Stage
- Asteroid returned
- Heliopolis essentially self-sufficient
- Cost: 50 B\$
- Revenue: 850 B\$
- People: 1500-2900
-62-100\% complete

Moon

Phase 4 (2039+)

- Heliopolis Completed
- Normal operations
- Cost: 0.19 B\$ per year
- Revenue: 214 B\$ first year
- People: 2900
- 100\% complete

Infrastructure Requirements

- Module fabrication facility
- Heavy-lift launch vehicle (HLLV) services
- Lunar mass driver
- Inter-orbital shuttle
- Ground receiver arrays (rectennas)

Technology Requirements

- Enabling Technology
- 250-tonne-to-LEO class HLLV
- Improved automation
- Nuclear reactor in space
- Closed-loop recycling
- Enhancing

Technology

- SEP using O2
- Nuclear thermal propulsion
- Improved PowerSail efficiency
- Mass driver propulsion
- Self-Replicating Machines

Cash Flow Analysis (log scale)

Alaska Pipeline Comparison

	Alaska Pipeline	Heliopoli s
Cost before revenue	$22.7 \mathrm{~B} \$$	$105 \mathrm{~B} \$$
Time to revenue	2.21 years	15 years
Avg. cost per year before revenue	10.3 B\$	7 B\$
Avg. profit per year	3 B\$	214 B\$1
Energy supplied per year2	94.5 MBTUs delivered	233 MBTUs produced

${ }^{1}$ Beginning of Phase 4

Three Gorges Dam Comparison

	Three Gorges Dam	Heliopoli s
Cost before revenue	$26.6 \mathrm{~B} \$$	$105 \mathrm{~B} \$$
Time to revenue	20 years	15 years
Avg. cost per year before revenue	$1.33 \mathrm{~B} \$$	$7 \mathrm{~B} \$$
Avg. profit per year	62.8 B\$3	214 B\$1
Energy supplied per year	$0.54 ~ M B T U s$ delivered	233 MBTUs produced

${ }^{1}$ Beginning of Phase 4
${ }^{3}$ Revenue; profit figures unavailable

Environmental Impact

Alaska Pipeline	Three Gorges Dam	Nuclear Power	Heliopolis
12 M gallons of oil spilled over last 25 years	Toxic levels of arsenic, mercury, lead, cyanide in water supply; 1.9 million people displaced	Chernobyl affected 7 million, contaminated 155,000 sq.km¹	Construction of rectennas (but still allows use of land); microwaves not harmful

> 1Belarussian Embassy website
> ${ }^{2} 1975$ Stanford study

Conclusions (1 of 3)

- O'Neill was right: world market exists to begin supply of solar energy
- World demand of 612 QBTUs ${ }^{1}$ far exceeds world production capability of 496 QBTUs ${ }^{2}$
- SPS production can begin to supply unmet demand
- Solar energy from SPS cleaner, safer than alternatives
- No risk of toxic wastes/spills
- No risk of explosions or meltdowns
- No people displaced, no land made unusable

Conclusions (2 of 3)

- LSMD study comparable to 1975 Stanford study - Differences reflect 25 years of technological advances
- However: LSMD study represents fundamentally new analysis
- Integrated cost model demonstrates project's economic feasibility
- Technology exists or can be designed to begin project in the next 20 years

Conclusions (3 of 3)

- Economic profit returned in 20 years
- Positive cash flow in 15 years
- Initial investment of $\$ 105$ billion
- Self-sufficiency and internalizing costs critical to project success
- Power requirements dominated by industrial refinery needs
- Project cost driven by food production
- Low mass, but biomass only available from Earth
- Personnel costs surprisingly insignificant

Technical Study: Overview

- Design Problems/Requirements \& Solutions
- Shanty Town Description
- Heliopolis Description
- System-Level Summary
- Discussion of Economic Model
- Explanation of Subsystem Models
- Summary

Orbit Requirements \& Options

- Requirements
- Fast and cheap access to
- Earth (employees, tourists)
- Resources (Moon, near-Earth asteroids)
- Market (geosynchronous orbit for SPSs)
- Continuous sunlight
- Dependent on solar energy
- Favorable to tourists
- Favorable radiation environment
- Options
- Low Earth Orbit (ISS-like, LEO)
- Sun-Synchronous Orbit
- Highly Elliptical Earth Orbit
- Geosynchronous orbit (GEO)
- Earth-Moon L1 halo orbit

Earth-Moon L1 Orbit

- Advantages
- Fast and cheap access to Resources and Market
- Orbit outside Earth's deep potential well
- Resources: Moon and NEAs are easy to access
- Market: Less energy to GEO than from LEO' and less radiation damage to SPSs ${ }^{2}$
- Continuous sunlight
- Eclipses are rare, brief
- Favorable to tourists
- Earth and Moon views
- Disadvantages
- Far from Earth
- Earth: Trip times of one to a few days to and from Earth
- Radiation environment
- Not protected by Earth's magnetic field

Earth-Moon L1 Orbit Selected

- Near Moon and NEA resources
- Goods cheaply sent to GEO
- Continuous solar energy

People and

Space Highways

- From L1, can access the InterPlanetary Superhighway
- Low fuel transfers to/from Earth-Moon space
- Uses natural pathways connecting Lagrange points in Sun-Earth-Moon system

Space Highways

- Earth-Moon L1 Halo Orbit "Portal"
- Low fuel access to lunar orbit, Earth orbit, and beyond
- Near-Earth asteroid retrieval

Space Highways

- LEO to Earth-Moon L1
- Expends 30\% less on-board fuel than a Hohmann troncfor

Low Earth Orbit to Moon Orbit Transfer
Seen in Geocentric Inertial Frame

Earth Orbit

Low Earth Orbit to Moon Orbit Transfer
Seen in Lunar Rotating Frame

Earth

Radiation Environment

- Earth-Moon L1
- Not protected by Earth's magnetic field
- Mostly unidirectional field of solar cosmic rays
- High energy (1 GeV) protons, electrons, and heavy nuclei
- Significant shielding
 necessary
- 12 cm Aluminum ${ }^{1}$
- Slag from refining

where t is shield thickness and keeping dose below 0.25 rem/year
${ }_{2}$ Assuming slag from refining has the same shielding ability as lunar regolith

Structure Requirements (1 of 3)

- Human physiology \rightarrow artificial gravity \rightarrow rotation
- Human physiology \rightarrow slow rotation
- Major radius 894 m creates 1 g at 1 rpm
- Rotating environment \rightarrow axial symmetry
- Options (see next slide):
-Sphere
-Torus
-Cylinder

Structure Requirements: (2 of 3)

正

Structure Requirements: (3 of 3)

- Minimum
construction time \rightarrow minimum structural material for required area, volume
- Radiation shielding requirements \rightarrow minimum projected area
- Torus best satisfies requirements

Technical Study: Overview

- Design Problems/Requirements \& Solutions
- Shanty Town Description
- Heliopolis Description
- System-Level Summary
- Discussion of Economic Model
- Explanation of Subsystem Models
- Summary

Initial Construction Phase: Requirements

- Earth-built, Earth-launched components
- Minimum time to first launch
- Minimum development cost
- Facility must be at L1
- Need a HLLV' capable of launching to this altitude
- Solution: "Shanty Town" (see next slide)
${ }^{1}$ Heavy-Lift Launch Vehicle

Shanty Town: Overview

- Assembled primarily from build-to-print ISS modules
- ~100 people inhabit 17 "Zvezda" style modules
- 63 fabrication modules begin construction of Heliopolis
- 25 connectors, 50 storage modules, 8 docking ports, and 3 "recreation" modules
complete the station

Shanty Town: Layout

Shanty Town: Positioning

- Orbit at L1 maintained so that radiation is essentially unidirectional
- Symmetric positioning of station eliminates solar radiation torque; solar array creates large solar radiation force
- Ion drive used to counteract radiation force

Technical Study: Overview

- Design Problems/Requirements \& Solutions
- Shanty Town Description
- Heliopolis Description
- System-Level Summary
- Discussion of Economic Model
- Explanation of Subsystem Models
- Summary

Heliopolis

- Toroid structure of double-walled aluminum
- Material largely extraterrestrial
- 20 years to build
- $894.3 \mathrm{~m}\left(r_{\mathrm{o}}\right) \times 36 \mathrm{~m}\left(r_{\mathrm{i}}\right)$ $4.1 \mathrm{M} \mathrm{m}^{3}$ internal volume
212,000 tonnes total mass

Heliopolis (cont.)

- Self-sufficient (except for limited specific goods)
- Construction platform for Earth-orbit and extraterrestrial consumption
- Staging post for deep space missions

Industrial-Tourist Complex

- The industries were selected for their economic feasibility, usefulness, and ease of integration with the space colony's goals and purpose
- Asteroid Mining - Provides raw materials for colony construction and space undertakings, and rare metals as cash crop for Earth
- Manufacturing - Initially directed towards station construction; later produces consumer goods for use in space, or exotic goods for export to Earth
- SPS, Climate Control - Uses assembly bays and raw materials required for colony construction and returns power and productive climate to Earth
- Tourism - Habitat for colony workers doubles as a recreational hotel with scenic excursions to the industry facilities and into space

Industry Interdependencies

正

Tourism

Technical Study: Overview

- Design Problems/Requirements \& Solutions
- Shanty Town Description
- Heliopolis Description
- System-Level Summary
- Discussion of Economic Model
- Explanation of Subsystem Models
- Summary

Functional/Work Decomposition

Heliopolis

Luke
Chad

Melahn
Not represented as a model
RyanShane

Model Interface

- Models exchange a set of parameters among themselves
- Represented graphically for rapid understanding
- Approximately 515 exchange parameters (see next chart)

Data Transfer Matrix: Parameters Passed Between Models

		4 0	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & 8 \end{aligned}$	$\begin{aligned} & \text { ㄷ } \\ & \text { ou } \\ & \text { U } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	$\frac{\text { 步 }}{\frac{0}{4}}$	Manufacturing	Milling \& Primary	$\begin{aligned} & \mathbf{\$} \\ & \mathbf{5} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ל } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \text { O } \\ & \frac{I}{0} \\ & \frac{0}{0} \\ & 0 \\ & 0 \\ & \hline 10 \end{aligned}$			$\begin{gathered} \infty \\ \stackrel{\infty}{6} \\ \stackrel{6}{6} \\ \stackrel{6}{6} \end{gathered}$	들 E E F	$\begin{aligned} & \frac{c}{0} \\ & \frac{10}{4} \\ & \frac{1}{0} \\ & \frac{0}{0} \\ & \frac{1}{0} \\ & \hline \end{aligned}$
Atmosphere	na	-	3	-	-	-	-	1	2	-	5	-	9	4	2	1
Attitude \& Orbit	-	na	2	-	-	-	-	1	3	1	-	-	8	4	3	3
Cost	-	-	na	-	-	6	-	-	-	-	-	-	-	-	-	6
Food Production	8	-	7	na	-	-	-	1	2	-	3	-	8	4	2	4
Habitat	1	-	-	-	na	1	1	-	2	-	2	-	11	1	2	-
Manufa cturing	-	-	3	-	-	na	8	1	3	-	2	1	17	5	2	1
Milling \& Primary	-	-	1	-	-	9	na	1	3	-	2	22	12	5	2	-
Personnel	13	1	4	6	1	1	2	na	2	1	4	2	11	5	2	3
Power	-	-	3	-	-	-	-	1	na	-	-	-	14	7	2	-
Radiation Shielding	-	1	-	-	-	-	-	1	-	na	-	-	9	2	-	-
Recycling	4	-	-	1	-	-	2	1	2	-	na	-	8	4	2	-
Refining	-	1	2	-	-	2	13	1	3	2	-	na	11	5	2	1
Structures	1	11	21	-	-	3	1	1	2	7	1	-	na	21	2	2
Systems	1	9	11	1	1	8	5	1	3	4	1	5	10	na	1	9
Thermal	-	-	-	-	-	-	-	1	2	-	-	-	15	4	na	-
Transportation	-	-	3	-	-	-	-	1	2	-	-	1	8	5	2	na

Systems Model

- Records and displays system properties such as mass,
$\substack{\text { Power, staff, } \\ \text { trucutural needs }}\rangle$ volume, station size and shape Easiest way to understand system behaviour

Subsystem characteristics

Systems (cont.)

Mass Breakdown: Station

Structures

TOTAL
Food Production
Support
Atmosphere Habitat

Personnel
Recycling
Attitude \& Orbit
Transportation
Structures
Industrial
Manufacturing
Milling \& Primary
Refining
Power
Thermal

212678
21718 tonnes

3080 tonnes
2818 tonnes
2 tonnes
210 tonnes
49 tonnes
5 tonnes
100 tonnes
169698 tonnes
18078 tonnes
10909 tonnes
381 tonnes
6433 tonnes
129 tonnes
225 tonnes

Systems (cont.)

Operating Power
 Food

Production
0\%

Support 1\%

Transportati

on
0\%

TOTAL	440.702	MW
Food Production	0.386	MW
Support	3.702	MW
Atmosphere	0.684	MW
Habitat	2.500	MW
Recycling	0.518	MW
Attitude \& Orbit	0.029	MW
Transportation	0.000	MW
Industrial	436.585	MW
Manufacturing	30.894	MW
Milling \& Primary	8.012	MW
Refining	397.679	MW

Technical Study: Overview

- Design Problems/Requirements \& Solutions
- Shanty Town Description
- Heliopolis Description
- System-Level Summary
- Discussion of Economic Model
- Explanation of Subsystem Models
- Summary

Cost Assumptions - Phase (-1)

- Phase (-1) - Research, Development, Design, and Testing
- Start Date: 2015
- Duration: 5 years
- RDT\&E = TFU * ICM * Launch Service Scalar
- Assume most modules will be built to ISS specs
- Habitat, Adapter, Communications, Storage, Docking
- Theoretical First Unit (TFU) cost small
- Initial Cost Multiplier (ICM) also small - using existing technology
- Other modules scale as ratio of mass to ISS Habitat Module
- Recreation, Fabrication
- Assume TFU for Heliopolis is First Livable Section
- Calculate TFU cost as cost of ISS scaled by mass ratio
- Assume development cost scales with launch cost
- Mass less of a design concern

Hypothesized Effect of Launch Cost Reduction on Hardware Cost

Cost Assumptions - Phase (-1)

- Assume Technological Advances
- Ground Fabrication Plants can keep up with module production demand
- Launch Services can keep up with launch demand
- Total Cost of Phase (-1): \$8.83B
- No Revenue Generated
- Assume Government guarantees investment
- Interest Rate = 10\%

Cost - Phase (-1)

-Assume total phase cost evenly distributed amongst years of phase

Cost Assumptions - Phase (0)

- Phase (0) - Construction of Shanty Town \& Lunar Mining Plant
- Assume cost of Lunar Mining Plant is correctly estimated by O'neill, and inflate to M\$Y2K
- Total Lunar Mining Plant Cost $=\$ 8,884.2 \mathrm{M}$
- Cost of phase driven by module construction and launch services
- Assume launch services to L1 cost $\$ 2,000$ / kg in 2020
- Independent developer creates NOVA-class vehicle technology capable of launching 250 tonnes to L1
- Lower launch service cost decreases cost of construction (see slides 48, 49)
- Assume a learning curve for the mass production of modules

Cost Assumptions - Phase (0)

- Learning Curve formula ${ }^{1}$
- X = \# of modules to be built
- $S=$ Learning Curve slope (\%)
- 95 if $(x<10)$
- 90 if $(10<=x<=50)$
- 85 if ($x>50$)
- $\mathrm{B}=1-\ln (100 \% / S) / \ln (2)$
- $L=$ Learning Curve Factor $=X \wedge B$
- Effective number of units at full TFU cost
- Production cost $=$ TFU cost * L

Cost Calculations - Phase (0)

- Calculate size based on necessary production output of fabrication modules
- Driven by size of completed Heliopolis
- Driven by necessary output of SPSs to break even within a time constraint which will attract investors
- Personnel rotation every 3 months
- Health considerations - Zero-g environment in this phase
- Increases mass to be sent up (i.e. Cost of Launch Services)

Cost Breakdown - Phase (0)

Element	Cost in	Cost Estimating Relationship
Launch Services	M\$Y $6,671.5$	\$2k / kg ${ }^{1}$
Habitat	767.7	\# of Modules ^ (Learning Curve Power) * \$/ ISS habitat module ${ }^{2}$ * ratio of the required mass of our module to that of ISS habitat module * launch service scalar
Recreation	167.4	\# of Modules ^ (Learning Curve Power) * \$ / ISS habitat module ${ }^{2}$ * ratio of the required mass of our module to that of ISS habitat module * launch service scalar
Fabrication	17,779.0	\# of Modules ^ (Learning Curve Power) * \$ / ISS habitat module ${ }^{\text {* }}$ ratio of the required mass of our module to that of ISS habitat module * launch service scalar
Power	18.8	Energy Required * (\% Energy supplied by Solar Power *MS MW to build solar array $+\%$ Energy supplied by Nuclear Power *MS / MW to build nuclear generator ${ }^{4}+\%$ Energy supplied by Dynamic Power ${ }^{*}$ MS / MW to build dynamic generator ${ }^{5}$ *
Communications	2.6	359.9 * Range (AU))/ 1000 * launch service scalar (from LSMD
Storage	406.5	\#ti Modules ^ (Learning Curve Power) * \$ / ISS storage module ${ }^{6}$ ratio of the required mass of our module to that of ISS storage module * launch service scalar
Ports	1,082.3	\# of Modules ^ (Learning Curve Power) * \$/ ISS port ${ }^{7}$ * ratio of the required mass of our port to mass of ISS port * launch
Personnel	5.0	Salaties + +fotad + supplies
Lusharamining Facility	8,884.2	Inflated cost from O'Neill's papers
Total	35,185.0	Sum of elements Chad

Cost Breakdown - Phase (0)

Ports	Storage Modules	Personnel
3%	1%	0%

- Total $=\$ 35,185.0 \mathrm{M}$ (Y2K)

Cost - Phases (1-4)

- Phases (1-4): Construction of Heliopolis
- Internalize all costs possible
- Food, Manufacturing, Power, Milling, Refining, etc.
- Only get from Earth what is absolutely necessary
- Biomass, Soil, Water, Atmospheric Gases
- Some unavoidable recurring costs
- Salaries, Carbon for Refining, Propellant, Launch Services
- Duration of each phase determined by

Cost - Phase (1)

- Duration $=0.9$ years
- Cost driven by Launch Services
- Cost of component purchase minimal - raw materials
- Biomass, Atmosphere, Simple Supplies
- Personnel cost is secondary driver
- Assume \# of personnel scales with \% station complete
- Earth still supplies all food requirements for Phase 1

Cost Breakdown - Phase (1)

Element	Cost (M\$Y2K)	Assumptions
Atmosphere	0.14	\$0.001M / tonne of gas ${ }^{1}$ O
Attitude \& Orbit	0.85	\$1M / tonne of propellant ${ }^{2}$, \$0.2M / thruster ${ }^{3}$
Food Production	2.02	\$128 / tonne biomass ${ }^{4}$, \$20 / tonne soil ${ }^{5}$, \$3/tonne
Habitat	3.15	\%.9teronnes of supplies / person ${ }^{7}$, \$0.1 M / tonne 8
Launch Services	27,301.28	\$1.588M / tonne to launch in during this phase ${ }^{9}$
Manufacturing	0.00	Internalized cost - material from moon, labor
Milling \& Primary	0.00	Internalized cost - material from moon, labor
Power	0.00	Internalized cost - material from moon, labor
Radiation Shielding	0.00	Internalized cost - material from moon, labor
Recycling	0.00	Internalized cost - material from moon, labor
Refining	0.02	\$425 / tonne of raw Carbon ${ }^{10}$
Structures	0.00	Internalized cost - material from moon, labor
Thermal	0.00	Internalized cost - material from moon, labor
Personnel	11.641	$\$ 7 \mathrm{~K} /$ tonne of food ${ }^{11}, \$ 0.1 \mathrm{M}$ for laborer ${ }^{12}, \$ 0.16 \mathrm{M}$ for manager ${ }^{13}$
Total Cost of Phase (1)	\$27,319.10M	See notes for references

Cost - Phase (2)

- Duration = 10.0 years
- Begin producing SPSs and earning revenue
- Costs continue to be driven by launch services
- Much higher than Phase (1) due to duration
- Secondary Costs:
- Propellant
- To initiate spin-up
- For Asteroid Retrieval Mission
- For Solar Power Satellites
- Biomass
- Personnel

Cost - Phase (2)

- Personnel increases as \% of station complete, but
- now assume station economy only loses 22\% of their salary
- Personnel pays station for own food, lodging, etc.
- 22\% based on:
- Avg. profit margin of American company ${ }^{1}$
- Avg. \% of salary savings of American household ${ }^{2}$
- Guestimate on \% external company's cost not paid to station ${ }^{3}$
- station now houses non-working personnel

Cost Breakdown - Phase (2)

Cost - Phase (3)

- Duration $=6.7$ years
- Asteroid has been retrieved
- No more Carbon needed from Earth
- Precious Metal Revenue possible
- Cost still driven by Launch Services

Cost Breakdown - Phase (3)

Element	Cost (M\$Y2K)	Assumptions
Atmosphere	1.27	$\$ 0.001 \mathrm{M} /$ tonne of gas
Attitude \& Orbit	89.62	$\$ 1 \mathrm{M} /$ tonne of propellant, $\$ 0.2 \mathrm{M} /$ thruster
Food Production	18.21	$\$ 128 /$ tonne biomass, $\$ 20 /$ tonne soil, \$3 / tonne
Habitat	17.26	W.9ternnes of supplies / person, \$0.1 M / tonne
Launch Services	$50,099.60$	$\$ 0.3254 \mathrm{M} /$ tonne to launch in during this phase
Manufacturing	47.01	$\$ 1 \mathrm{M} /$ tonne of propellant (for SPSs)
Milling \& Primary	0.00	Internalized cost - material from moon, labor
Power	0.00	Internalized cost - material from moon, labor
Radiation Shielding	0.00	Internalized cost - material from moon, labor
Recycling	0.00	Internalized cost - material from moon, labor
Refining	0.00	Internalized cost - material from moon \& asteroid,
Structures	0.00	laternalized cost - material from moon, labor
Thermal	0.00	Internalized cost - material from moon, labor
Personnel	26.60	$\$ 0.1 \mathrm{M}$ for laborer, \$0.16M for manager
Total Cost of	$\$ 50,299.57 M$	See notes on slide 59 for references
PhaSe (1)		

Cost - Phase (4)

- Steady-state
- Cost Drivers
- Propellant
- SPSs
- Attitude \& Orbit
- Launch Services
- Assume that by this time, cost is $\$ 200 / \mathrm{kg}$
- Significantly less shipping
- No additional Atmosphere, Biomass, etc. required
- Personnel
- Supplies
- Still need small supplies from Earth (e.g. medical supplies)

Cost Breakdown - Phase (4)

Cost Breakdown by Phase

Phase	Cost in M\$Y2K (excluding
-1	8,86terest)
0	35,185.0
1	27,319.1
2	150,897.9
3	50,299.6
Total	$\begin{aligned} & \$ 272,532.2 \\ & (\% 2 K) \end{aligned}$

Cost / Year by Phase

Phase	Cost / Year (in M\$Y2K)
-1	$1,766.12$
0	$22,587.91$
1	$30,973.11$
2	$15,089.79$
3	$7,442.42$
4	191.04

Cost by Year

Revenue Generators

- Solar Power Satellites

- Assume construct 1 per month
- Size and output scale with \% station complete
- First satellite produced generates 225 MW
- Phase (4), satellites produced generate 4500 MW
- Linear fit between these points
- Assume SPS lifetime exceeds 30 years
- No SPS production until beginning of Phase (2)
- Assume station will sell energy at \$.05 / kW*hr (Y2K)
- Low end of current competitive prices

Revenue Generators

- Suggested for inclusion in future studies
- Tourism
- Generates revenue through all phases
- Communications Satellites
- Opportunity Cost of time to build SPSs
- Precious Metals
- Generates revenue in phase (3) from asteroid refining
- Zero-G Manufacturing
- Opportunity Cost of time to build SPSs

Time to Profit

- Accounting Profit in Year 15
- Economic Profit in Year 20
- Total Economic Profit at start of Phase 4 (Year 25)

$$
\$ 925,092,412,524
$$

Total Revenue

Cash Flow Analysis by Year

Cash Flow Analysis (log scale)

Cumulative Cash Flow Analysis

正

Financial Conclusions

- Vital assumptions
- Launch Services can handle project requirements for $\$ 2 \mathrm{~K}$ / kg.
- Construction and development costs scale with launch service
- Cost of some systems can be "internalized" as opportunity cost (time)
- Station can produce 1 SPS / month with output based on \% of station complete
- Requires \$105B initial investment over first 11 years
- Profitability
- 15 years to accounting profitability
- 20 years to economic profitability

2guay \$6.9T profit by year 40

Technical Study: Overview

- Design Problems/Requirements \& Solutions
- Shanty Town Description
- Heliopolis Description
- System-Level Summary
- Discussion of Economic Model
- Explanation of Subsystem Models
- Summary

Discussion of Subsystem Models

- Industrial Model
- Manufacturing
- Milling
- Refining
- Habitat
- Food Production
- Atmosphere
- Recycling
- Personnel
- Power
- Thermal
- Structures
- Attitude Control
- Transportation
- Radiation Shielding

Industry Model Overview

- Traces production from raw materials through to finished goods: solar power satellites, station components, etc.
Models draw data from car manufacturing plants, aluminum production facilities, American industrial averages, etc.

Industry Model Assumptions

- Time-Independent Assumptions:
- 20\% waste heat
- Average complexity is equivalent to car manufacturing
- Logarithmic scaling of time-dependent variables
- Time-Dependent Assumptions:

Phase	Productivit y Multiplier	Percent Non- Terrestrial Materials
1	2	0

Industry Model Results (1 of 2)

Station Power Usage

Station Population

- Personnel employed peaks at 360 in phase 2, settles to ~340 in phase 4
- Requires 18,000 tonnes, $27,000 \mathrm{~m}^{3}$ of facilities and machinery in phase 4
- Uses ~430 MW of power in phase 4

Industry Model Results (2 of 2)

- Imports ~750 tonnes/month of material from Earth
- Exports 1 4.5 GW SPS and 2 Ansible ${ }^{1}$-class satellites/month by phase 4

¹From 2000 LSMD study

Industry Model Manufacturing Module

- Inputs feedstocks and primary materials (electronics, e.g.) "Builds" finished goods as required for profit by Cost client

Model draws data from car manufacturing plants,
aluminum production facilities, and O'Neill's SSI report on space-based manufacturing

Industry Model Manufacturing: Process

- Sample calculation block: assembly of hull sheeting for construction of Heliopolis

Hull Sheeting, Phase 1		
Al 6061-T6 Input	3431.050 tonnes/month	Calculation
Steel Input	183.381 tonnes/month	Calculation
Hull Sheeting Output	3614.432 tonnes/month	Calculation (structural material/duration of phases 1-3)
Energy Usage	0.986207 MW -hr/tonne	Calculation (numbers based on Ford's Saarlouis plant; 1780 cars/day)
Power	4.951 MW	Calculation
Waste Power	4.951 MW	Calculation
Necessary Area	$1620.210 \mathrm{m2}$	Calculation (scaling of RBAAP)
Ceiling Height	4 m	WAG
Necessary Volume	$6480.841 \mathrm{m3}$	Calculation
Necessary Mass	6563.808 tonnes	O'Neill ("New Routes to Manufacturing in Space"); half manufacturing, hal'
Work Rate	25.6218 work-hr/tonne	Calculation (numbers based on Ford's Saarlouis plant)
Productivity Multiplier	$2 \#$	
Personnel	$194 \#$	Calculation

Industry Model Milling Module

Required feedstock

Industrial materials

Data come from US gov't and industry; assumed scalability

- Converts processed/refined materials into industry-usable feedstock (ie., milling) Also keeps track of "primary production" - electronics, etc.

Industry Model Milling: Process

- Inputs required feedstocks from Manufacturing
- Calculates required material supplies
- Outputs available feedstocks

Aluminum Milling		
Raw Aluminum Input Processing Efficiency Aluminum Stock Output Scrap Output	20.952 tonnes/month 98 \% 20.533 tonnes/month 0.419 tonnes/month	Calculation WAG Calculation (per capita US productivity; USCB) Calculation
Energy Usage Power Efficiency Power Waste Power	$\begin{aligned} & \text { 0.308 MW-hr/tonne } \\ & \text { 80 \% } \\ & \text { 0.000 MW } \\ & \text { 0.000 MW } \end{aligned}$	WAG Calculation Calculation
Necessary Area Ceiling Height Necessary Volume Necessary Mass	8050.507 m 2 4 m 32202.027 m 3 805.051 tonnes	Calculation (scaling of RBAAP, 5-1 better than 1940s, offset of 100 m 2) WAG Calculation WAG (100 kg/m2)
Work Rate Automation Personnel	$\begin{aligned} & 12.496 \text { work-hr/tonne } \\ & 95 \% \\ & 3 \text { \# } \\ & \hline \end{aligned}$	Calculation (ALCOA's Troutdale plant) Mike's numbers from 1st term Calculation

Industry Model Refining Module

Raw materials

- Data taken from US Census Bureau and industry reports (ALCOA, e.g.)
- Sized by requirements from Milling client
- Deals with resources from raw stage to first usable form

Industrial stock

Power, staff, structural needs

Industry Model Refining: Process

- Sample calculation block: reduction of lunar olivine
- Checks for closed loops - flags net inputs or outputs (italics)

Habitat Model

- Characterizes the living spaces of Heliopolis
Space per person (pps) increases ~33\% with each phase to reflect the increasin standard of living within the colony
Some components, such as public space, shops \& services, are not present in ini shanty phase
- Phase 3 colony has spaces comparable to Stanford Torus study in 1976
- Completed colony has projected area p.r

Habitat Model Spaces

Spaces Considered

- Living Quarters - bed, bath, kitchen, den, dining rooms
- Entertainment - cinema, theatre, video games, internet
- Public space - parks, open fields, gardens
- Recreation - exercise equipment, track, swim pool
- Shops - general \& grocery store
- Service Industry - personal goods
- Offices - government, trade, accounting
- Hospital - telemedicine robotic facility
- School - library, teleducation facility
- Cafeteria - food services away from home
- Walk ways - escalators, moving floors, light rail

Habitat Model Notes

- Space requirements per person for each phase are presented in next 4 tables
- Characterization of Habitat for each phase presented in final chart
- Numbers give idea how habitat is expected to grow in

Habitat Phase 1 Assumptions

Habitat Space per Person	mass	volume	area	height	power normal	power emergenc y	metal waste	plastic waste
Section	kg/m2	m3/pps	m2/pps	m	kW/pps	kW/pps	kg/monthpps	kg/monthpps
Living Quarters	1	10	5	2	0.05	0.005	0.5	1.0
Entertainment	1	3	1	3	0.1	0.001	0.0	0.0
Public Space	0	0	0	0	0.02	0	0.0	0.0
Cafeteria	1	7.5	3	2.5	0.1	0.003	0.0	0.2
Recreation	3	9	3	3	0.1	0.003	0.0	0.0
Shops	0	0	0	0	0.05	0	0.0	0.1
Service Industry	0	0	0	0	0.05	0	0.0	0.0
Offices	1	5	2	2.5	0.05	0.002	0.0	0.0
Hospital	1	1.25	0.5	2.5	0.1	0.1	0.1	0.1
School	1	2.5	1	2.5	0.03	0.001	0.0	0.0
Walkways	1	9	3	3	0.02	0.003	0.0	0.0
Totals	1.32	47.25	18.5	2.55	0.67	0.118	0.6	1.4

*Values for space requirements scaled down ~80\% from 1975 Stanford Study

Habitat Phase 2 Assumptions

Habitat Space per Person	mass	volume	area	height	power normal	power emergency	metal waste	plastic waste
Section	kg/m2	m3/pps	m2/pps	m	kW/pps	kW/pps	kg/monthpps	kg/monthpps
Living Quarters	8	100	40	2.5	0.1	0.04	1.5	0.8
Entertainment	8	5	1	5	0.15	0.001	0.0	0.0
Public Space	4	300	10	30	0.02	0.01	0.0	0.0
Cafeteria	6	2.5	1	2.5	0.1	0.001	0.0	0.3
Recreation	12	6	2	3	0.1	0.002	0.0	0.0
Shops	20	2.5	1	2.5	0.05	0.001	0.0	0.2
Service Industry	8	2.5	1	2.5	0.05	0.001	0.0	0.0
Offices	8	2.5	1	2.5	0.05	0.001	0.0	0.0
Hospital	6	2.5	1	2.5	0.1	0.1	0.2	0.2
School	6	5	2	2.5	0.05	0.002	0.0	0.0
Walkways	2	18	6	3	0.02	0.006	0.0	0.0
Totals	7.03	446.5	66	6.77	0.79	0.165	1.65	1.35

Habitat Phase 3 Assumptions

Habitat Space per Person	mass	volume	area	height	power normal	power emergenc y	metal waste	plastic waste
Section	kg/m2	m3/pps	m2/pps	m	kW/pps	kW/pps	kg/monthpps	kg/monthpps
Living Quarters	8	122.5	49	2.5	0.15	0.049	1.9	0.9
Entertainment	8	10	2	5	0.15	0.002	0.0	0.0
Public Space	4	450	15	30	0.02	0.015	0.0	0.0
Cafeteria	6	2.5	1	2.5	0.1	0.001	0.0	0.4
Recreation	12	6	2	3	0.15	0.002	0.0	0.0
Shops	20	5	2	2.5	0.1	0.002	0.0	0.2
Service Industry	8	5	2	2.5	0.1	0.002	0.0	0.0
Offices	8	2.5	1	2.5	0.05	0.001	0.0	0.0
Hospital	6	5	2	2.5	0.1	0.1	0.2	0.2
School	6	7.5	3	2.5	0.07	0.003	0.0	0.0
Walkways	2	24	8	3	0.02	0.008	0.0	0.0
Totals	6.99	640	87	7.36	1.01	0.185	2.0625	1.6875

Habitat Phase 4 Assumptions

Habitat Space per Person	mass	volume	area	height	power normal	power emergenc y	metal waste	plastic waste
Section	kg/m2	m3/pps	m2/pps	m	kW/pps	kW/pps	kg/monthpps	kg/monthpps
Living Quarters	8	150	60	2.5	2	0.06	2.3	1.2
Entertainment	8	10	2	5	0.2	0.002	0.0	0.0
Public Space	4	750	25	30	0.02	0.025	0.0	0.0
Cafeteria	6	5	2	2.5	0.1	0.002	0.0	0.5
Recreation	12	9	3	3	0.2	0.003	0.0	0.0
Shops	20	7.5	3	2.5	0.1	0.003	0.0	0.2
Service Industry	8	5	2	2.5	0.1	0.002	0.0	0.0
Offices	8	5	2	2.5	0.1	0.002	0.0	0.0
Hospital	6	10.5	3	3.5	0.1	0.1	0.2	0.2
School	6	10	4	2.5	0.1	0.004	0.0	0.0
Walkways	2	30	10	3	0.02	0.01	0.0	0.0
Totals	6.88	992	116	8.55	3.04	0.213	2.578125	2.109375

*Values for space requirements scaled up ~33\% from 1975 Stanford Study

Habitat Model Results Summary

Life Support Models

- System models for supporting humans in space
- Includes:
- Food Production
- Atmosphere
- Recycling

Food Production Model: Overview

- Calculates the nutrition requirements to feed the station population
 changes

Food Production Model: Assumptions

- Farming technologically stable
- Crop yields will increase (i.e. bioengineered plants) but not by more than 2 x .
- Equipment will not undergo major technological changes over the current timetable
- Standard soil farming proven technology and less labor intensive than hydroponics or airponics

Food Production Model: Calculations

Population

$$
* \begin{gathered}
\text { Area needed per } \\
\text { person for Agriculture }
\end{gathered}=\begin{gathered}
\text { Total agricultural } \\
\text { area }
\end{gathered}
$$

Key:

Inputs

Constants

Calculated

Outputs

Food Production Model: Description

- Conditions
- Normal Earth gravity for crops
- Reflected light from station mirrors - no need for artificial light
- Climate control optimizes atmospheric conditions for crops
- Provides "visible green spaces" for people on the station

Food Production Model: Results

- Phase 1
- No onboard food production
- Regular re-supply needed
- Small impact to station mass and volume

Staff, Food Production Waste power, Food	0	$\#$
Production O2 hange by Food	0.01	MW
Production	0	$\mathrm{~kg} /$ day
CO2 change by Food Production	0	$\mathrm{~kg} /$ day
H20 vapor change by Food Production	0	$\mathrm{~kg} /$ day
Water waste from Food Production	0	$\mathrm{~kg} /$ day
Food Re spply required from Earth	2.5	tonnes $/ \mathrm{mon}$ th
Water Re supply required from Earth (recycled)	0	tonnes $/ \mathrm{mon}$ th
Requested Sunlight, natural	0	$\mathrm{~W} / \mathrm{m} 2$
Mass of soil	0	tonnes
Mass of water	0	tonnes
Mass of biomass	0	tonnes

All values calculated in the model

Food Production Model:

Results

- Phase 4
- Onboard food production meets station needs
- No regular re-supply
- Adds significant mass and area requirements on the overall structure
- Staff accounts for about 10\% of total population

Staff, Food Production Waste power, Food	361	$\#$
Production O2 Change by Food	0.3	MW
Production		

All values calculated in the model

Atmosphere Model: Overview

Book keeps the changes made to the atmosphere

- Sums changes made by other subsystem models

Atmosphere changes

Calculates changes needed from Recycling model to maintain desired atmospheric conditions
Outputs air circulation equipment requirements

Atmosphere Model: Calculations

Internal volume	\star	Circulation fans per m ${ }^{3}$	=	Total number of fans

Atmosphere Model: Results

- Phase 1
- A significant quantity of atmospheric gas must be shipped up from Earth
- CO_{2} conversion to O_{2} required
- Circulation fans not a significant driver for model output values

Necessary mass (total)	23.8	tonnes
Mass of Atmosphere (Gas only)	23.25	tonnes
Necessary volume	345	m 3
Power, Atmosphere	0.17	MW
CO2 change to Recycling	-115	$\mathrm{~kg} /$ day
O2 change to Recycling	98	$\mathrm{~kg} /$ day
H2O change to Recycling	-230	$\mathrm{~kg} /$ day
Number of fans	58	$\#$

All values calculated in the model

Atmosphere Model: Results

- Phase 4
- A significant quantity of atmospheric gas must be shipped up from Earth
- Plant respiration removes more CO_{2} than is created elsewhere
- Circulation fans still not a significant driver for model output values

Necessary mass (total)	2818	tonnes
Mass of Atmosphere (Gas only)	2750	tonnes
Necessary volume	1369	m 3
Power, Atmosphere	0.68	MW
CO2 change to Recycling	5766	$\mathrm{~kg} /$ day
O2 change to Recycling	-3315	$\mathrm{~kg} /$ day
H2O change to Recycling	-5766	$\mathrm{~kg} /$ day
Number of fans	1790	$\#$

All values calculated in the model

Recycling Model: Overview

Waste for processing

Atmospheric balancing

- Models conversion of waste to usable resources for the station

Focus on maintaining closed atmospheric and water cycles
Returns inedible biomass as fertilizer for Food Production

- Returns waste metal and plastic to industry for

Recycling Model: Assumptions

- There will be an increase in efficiency for the various recycling processes due to technological improvements
- Industry can make use of plastic and metal waste recovered from the modules

Recycling Model: Calculations

For a given recycled material X, these are the basic calculations for determining model requirements
Quantity of X
to recycle

units	*	Mass of each unit	$=$	Total mass to recycle X
units	*	Volume of each unit		Total volume to recycle X
units	*	Power for each unit	$=$	Total power to recycle X

Recycling Model: Calculations

- A typical piece of recycling equipment: Trace contaminant removal unit* removes contaminants from the atmosphere

Mass	100	kg
Volume	0.3 m 3	
Power	150	W
Processing	0.0154	$\mathrm{~kg} /$ day

Can remove $15.4 \mathrm{~g} /$ day of contaminants from air

Recycling Model: Calculations

- The calculations for model totals are as follows:

Key:

Inputs
Constants
Calculated
Outputs

The calculations for model totals are as follows

Recycling Model: Results

- Phase 1
- Water processing is the largest task of the model
- Less significant because operating in only a semi-closed loop
- Recycling not a significant driver at system level

Necessary mass, Recycling1	31.0	tonnes
Metal waste for Recycling1	0.2	tonnes /mon th
Plastic waste for Recycling1	0.6	tonnes /mon th
Fertilizer from Recycling1	0	tonnes /mon th
Power, Recycling1	0.04	MW
O2 processed by Recycling2	2.9	tonnes /mon th
H2O processed by Recycling2	6.9	tonnes /mon th
CO2 processed by Recycling2	3.5	tonnes /mon th
Water processed by Recycling2	172.5	tonnes /mon th
Waste from Recycling1	1.1	tonnes /mon th

${ }^{1}$ values calculated in the model
${ }^{2}$ values are inputs

Recycling Model: Results

- Phase 4
- Water processing is still the largest task of the model
- Near-closure of life support resource loops
- Recycling not a significant driver at system level - smaller overall mass percentage

Necessary mass, Recycling1	52.1	tonnes
Metal waste for Recycling1	7.4	tonnes/mon th
Plastic waste for Recycling1	6.1	tonnes/mon th
Fertilizer from Recycling1	48.5	tonnes/mon th
Power, Recycling1	0.5	MW
O2 processed by Recycling2	96.5	tonnes/mon th
H2O processed by Recycling2	12759	tonnes/mon th
CO2 processed by Recycling2	167.9	tonnes/mon th
Water processed by Recycling2	4337	tonnes/mon th
Waste from Recycling1	0.64	tonnes/mon th

${ }^{1}$ values calculated in the model
${ }^{2}$ values are inputs
115
Luke

Life Support Summary

- Biomass must come from Earth
- Must pay launch cost for biomass
- Requires efficient recycling and closed resource loops to be economically feasible
- Can be accomplished with current technology
- Assumed technological improvements do not greatly reduce the overall mass of the models

Personnel Model: Overview

- Book keeps station personnel requirements
- Models community population based on industrial town (Dearborn, MI)
Calculates basic life support requirements for the total population

Personnel Model: Assumptions

- In phase 4, there will be a "support" population" about 5 times the industrial population²
- In phase 4, there nonworking dependents will make up about 1/3 of the overall population ${ }^{3}$
- In phase 1, only the necessary people are sent to work on the

Phase	Support population fraction	Dependent as fration of working population
1	1.01	0.00
2	1.5	0.18
3	2.75	0.30
4	5	0.50

${ }^{1}$ Industrial population includes Manufacturing, Milling \& Primary, Refining and Structures ${ }^{2}$ Based on the Dearborn, MI population

Personnel Model: Results

- A fully populated station
- Majority work as support population for industry
- Non-working family next largest group
- Food production third largest
- Actual industry personnel fourth largest
- Station maintenance personnel smallest group

Personnel Model: Results

- Phase 1 population breakdown

Staff, Attitude/Orbit 5
Staff, Food Production 0
Staff, Manufacturing 29
Staff, Milling \& Primary 22
Staff, Power 9
Staff, Radiation Shielding 1
Staff, Recycling 3
Staff, Refining 4
Staff, Structures 0
Staff, Thermal 25
Staff, Transportation 15
$\begin{array}{ll}\text { Subtotal of Station Staff } & 113\end{array}$
Staff, Personnel 1
Support population for Industry 1

Total Working	115
Total Non-working	0

Total Personnel 115

Personnel Model: Results

- Phase 4 population breakdown

\square
\square Industrial
\square Food
Production
\square Other Staff
\square Support
\square Dependent

Staff, Attitude/Orbit 5
Staff, Food Production 361
Staff, Manufacturing 246
Staff, Milling \& Primary 35
Staff, Power 26
Staff, Radiation Shielding 5
Staff, Recycling 6
Staff, Refining 14
Staff, Structures 2
Staff, Thermal 17
Staff, Transportation 15

Subtotal of Station Staff	732
Staff, Personnel	1
Support population for Industry	1188
Total Working	1921
Total Non-working	961
Total Personnel	2882

121
Luke

Personnel Model: Results

Power Model

Normal Power

Characterizes Heliopolis's power generation system Utilizes Photovoltaic, Solar Thermal Dynamic, and Nuclear means of production
Emergency mode exists when no sola energy is incident upon station or all solar energy generation means are inoperable

Volume

Power

Power Assumptions

- Solar Photovoltaic
- 10 fold power/mass improvement by fourth phase
- 75\% power produced
- Solar Thermal Dynamic
- 6 fold power/mass improvement by fourth phase
- 20\% of power produced
- Nuclear
- 6 fold power/mass improvement by fourth phase
- 5\% of power produced
- Sized to meet emergency 28 may 200 power demands

124
Melahn

Power Model Notes

- Features of each phases power generation method are shown along with the power subsystems results summary for each phase in a table and chart to follow

Power Assumptions

Power Generation Options		mass	volume	area	Staff
		kg/MW	$\mathrm{m}^{3 / \mathrm{MW}}$	m²MW	pps/MW
Phase 1	Photovoltaic	5000.00	72.99	3649.64	0.10
Phase 2	Photovoltaic	2500.00	60.83	3041.36	0.10
Phase 3	Photovoltaic	1000.00	47.09	2354.60	0.07
Phase 4	Photovoltaic	500.00	36.50	1824.82	0.048
Phase 1	Dynamic	6000.00	19.23	1923.08	0.12
Phase 2	Dynamic	3000.00	15.38	1538.46	0.14
Phase 3	Dynamic	1500.00	12.82	1282.05	0.10
Phase 4	Dynamic	1000.00	10.99	1098.90	0.07
Phase 1	Nuclear	12500.00	60.00	12.00	0.16
Phase 2	Nuclear	6000.00	50.00	10.00	0.19
Phase 3	Nuclear	4000.00	40.00	8.00	0.14
Phase 4	Nuclear	2000.00	25.00	5.00	0.09

Phase 1 values from SMAAD later phases follow from reasonable technology roadmap

Power Model Results Summary

Thermal Model

Thermal Assumptions

- Radiator
- 100 fold improvement in heat rejected per mass by fourth phase
- Removes 60\% of waste heat
- Large area required for array
- Heat Pipes
- 10 fold improvement in heat rejected per mass by fourth phase
- Removes 20\% of waste heat
- No power required, but limited by available area
- Regenerative
- 10 fold improvement in heat rejected per mass by fourth phase
- Removes 20\% of waste heat 28 May 2992
2

Thermal Model Notes

- Features of each phases thermal control method are shown along with the thermal subsystems results summary in a table and chart to follow

Thermal Assumptions

Phase 1 values from SMAAD later phases follow from reasonable technology roadmap

Thermal Model Results Summary

Structures: Overview

- Accommodates mass, area, and volume needs of other subsystems
Allows trades between primary materials for performance evaluation
Optimizes size of Shanty Town for minimum combined time of Phases 0-1

Structures: Example

MASS	
In Outer Torus	
Atmosphere	1162 tonnes
Attitude \& Orbit	7 tonnes
Habitat	12487104 tonnes
Personnel	481 tonnes
Recycling	114 tonnes
Thermal (internal)	3336 tonnes
Transportation	100 tonnes
In Inner Torus	
Food Production	
Out of Plane. 49619.87 tonnes	
Manufacturing	57492 tonnes
Milling \& Primary	1848 tonnes
Power (not solar panels)	603.3 tonnes
Radiator	87.5 tonnes
Refining	33049 tonnes
Solar Panels	2154.5 tonnes
Thermal (external)	1086.3 tonnes

AREA	
In Outer Torus	
Atmosphere	$0 \mathrm{m2}$
Attitudue \& Orbit	106 m 2
Habitat	1815168 m 2
Personnel	$0 \mathrm{m2}$
Recycling	823 m 2
Thermal (internal)	728808 m 2
Transportation	10000 m 2
In Inner Torus	
Food Production	
Out of Plane	
Manufacturing	3481 m 2
Milling \& Primary	243 m 2
Power (not solar panels)	503 m 2
Radiator	0 m 2
Refining	32631 m 2
Solar Panels	3194074 m 2
Thermal (external)	243021 m 2

- An example of the mass accounting budget

Structures

Structural Parameters

Necessary major radius of torus	894.259 m
Necessary area	404567.177 m 2
Necessary minor radius from area	36.001 m
Necessary volume	4048492.983 m 3
Necessary minor radius from volume	15.144 m
Using minor radius	36.001 m
Ultimate factor of safety	2
Material	AI $6061-\mathrm{T} 62$
Skin thickness	0.019 m
Mass of structural material	84848.958 tonnes
Mass of aluminum	80252.954 tonnes
Mass of steel fasteners	4596.004 tonnes
Mass of glass	84848.958 tonnes

- Calculations for structure size, amount of material needed
- Uses a database of material properties
- Plausible comparison with 1975 Stanford study

Attitude \& Orbit

Determine attitude and orbit from design requirement for sun-pointing platform
Strucures. Maintain attitude and orbit
Propellant type may change as raw materials from Moon become available

- Compute eclipse time

Attitude \& Orbit

- Orbital perturbations (Heliopolis, Phase 4) $F_{a} \approx \frac{1}{2} \rho C_{d} A_{t} V^{2}, \rho=$ density, $C_{d}=2.2$
- Solar radiation pressure $A_{t}=$ area tangent to orbit, $V=$ orbital velocity - 0.93 N

$$
F_{s p} \approx \frac{s}{c} A_{n}(1+q) \cos (i), \quad q \approx 0.6, \quad \cos (i) \approx 1,
$$

- L1 orbital instability - 0.076 N

$$
\begin{aligned}
& S=1358 \mathrm{~W} / \mathrm{m}^{2}, \text { solar flux at } 1 \mathrm{AU} \text { from the Sun, } \\
& A_{n}=\text { area normal to orbit plane }, c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

- Propellant to counter forces and maintain orbital stability
- 0.0533 tonnes/month (Xe)
- Assumes Isp = 5000 for Solar Powered Xenon Ion Propulsion (Phase 4)

$$
\begin{aligned}
& \frac{d m_{p}}{d t} \approx \frac{\rho r C_{d} A_{t}}{2 I_{s p}} \text { for aerodynamic drag } \\
& \frac{d m_{p}}{d t} \approx \frac{F_{s p}}{g I_{s p}} \text { for solar radiation pressure }
\end{aligned}
$$

- Power needed: 0.0288 MW

Attitude \& Orbit

- Euler angles
- (pitch, yaw, roll) = (θ, ϕ, ψ)
- Rotation rates
- $\omega_{z}=1 \mathrm{rpm}$
- $\omega_{\mathrm{x}}=\omega_{\mathrm{y}}=0$

spin axis (pointing roughly out of ecliptic)

Attitude \& Orbit

- Moments of inertia for an n concentric torus structure

$$
\begin{aligned}
& I_{2}=\left(\frac{3}{2} s t+r^{2}\right) M \\
& I_{1}=I_{3}=\left(\frac{5}{4} s t+\frac{1}{2} r^{2}\right) M
\end{aligned}
$$

where:
$r=$ major radius,$s=$ minor radius
$t=$ skin thickness, $M=$ mass of torus.
Notice : $I_{2} \approx 2 I_{1}$ when st $\ll r^{2}$
For n concentric tori with moments I_{1}^{a}, I_{2}^{a}, and I_{3}^{a}, where $a=1, \ldots, n$, we simply sum :

$$
I_{i}=\sum_{a=1}^{n} I_{i}^{a}, \quad \text { for } i=1,2,3
$$

Attitude \& Orbit

- Torque estimates

- Gravity gradient

$$
\begin{aligned}
& T_{g} \approx \frac{3 \mu}{R^{3}}\left|I_{3}-I_{2}\right| \psi, \psi=\text { deviation from vertical, } \\
& \quad \mu=\mathrm{GM}_{\mathrm{E}}, R=\text { radius of orbit } \\
& T_{a} \approx F_{a} \delta c_{g}, \frac{\delta c_{g}}{L}=1 \%, L \approx 895 \mathrm{~m}
\end{aligned}
$$

- Aerodynamic

$$
T_{s p} \approx F_{s p} \delta c_{g}
$$

- Solar radiation pressure
$T_{m} \approx D B, D=$ residual dipole moment of vehicle,
- Magnetic field

$$
B=\frac{2 M}{R^{3}}, M=7.96 \times 10^{15} \text { tesla } \mathrm{m}^{3}
$$

Attitude \& Orbit

- Torque estimates for Heliopolis, Phase 4

Gravity gradient	0.005 Nm per deg of ψ
Aerodynamic	~ 0
Solar radiation	8.34 Nm per 1% of $\delta \mathrm{c}_{\mathrm{s}}$
Preşghetfe field	~ 0

Attitude \& Orbit

- Attitude stabilization
- Spin stabilization (for torques affecting z axis)
- For 1° accuracy Hss $=$ T*P/4, $\mathrm{P}=$ orbit period
- Hss $=2.99 \mathrm{e} 8 \mathrm{~kg} \mathrm{~m}{ }^{\wedge} 2 / \mathrm{s}(\text { for } T=T s p, S R P)^{1}$
- $\mathrm{H}=1.71 \mathrm{e} 10 \mathrm{~kg} \mathrm{~m}$ ^2/s >> Hss
- Thruster stabilization (for torques affecting x,y axes)
- Disturbance torque: T = Tsp , SRP
- Thrust needed: Th = T/L , L = length of arm (torus major axis)
- $\mathrm{dm} / \mathrm{dt}=\mathrm{Th} /(\mathrm{g}$ * Isp) $=4.93 \mathrm{e}-4$ tonnes $/ m o n t h$ of xenon

Attitude \& Orbit

- Eclipses
- Very rare in Lunar L1 halo orbit
- Conclusions
- Solar radiation pressure is dominant perturbation
- Solar powered xenon ion propulsion is adequate
- For attitude maintenance, spin stabilization with a few thrusters is adequate

Transportation

Transporting people and materials

Personnel needs between Earth, L1 colony, \& GE

Propellant needed Propellant requirements from astrodynamics calculations and rocket equations

Shuttle and Tug frequency
More advanced launch vehicles and space tugs for each phase, using advanced technology, extraterrestrial resources as they become available

Transportation: Overview

MOON'S SURFACE

Transportation: Overview

MOON'S SURFACE

Transportation: Overview

Transportation: Overview

Transportation: Overview

Transportation: Delta V to L1

- From Low Earth Orbit
- Impulsive propulsion

Earth Parking Orbit to Earth-Moon L1 Δ V Cost vs. Flight Time

LEO/L1: Inputs

- Earth to L1 Colony
- Material transport / trip frequency

LEO/L1: Assumptions/Outputs

- Launch Services: Earth to LEO
- LEO payload = 250 tonnes (NOVA-class)
- biprop, LO2/LH2
- LEO \Leftrightarrow L1 Colony "Shuttle"
- Nuclear thermal, 250 tonnes of payload to L1
- Propellant: H2
- Phases $0-2$: Purchased from Earth unless lunar source discovered
- Phases $3+$: Available from retrieved asteroid

	Phases	0	1	2	3	4		Assumption Source
Assumptions	Isp	1000	1000	1000	1125	1250	sec	Sercel: Technological progress
	Factor	10\%	7\%	5\%	4\%	3\%	\%	Sercel: Technological progress
	Tankage Factor	25\%	25\%	20\%	16\%	12\%	\%	Sercel: Technological progress
	\# of passengers	20	30	40	50	60	\#	Ross: 10 more each phase
	One-way TOF	3	3	2.5	1.5	1	days	Ross: Faster transit with time
Outputs	Delta-V	3900	3900	4100	5300	6500	m/s	
	Mprop	98.4	95.7	96.3	106	112	tonnes	
	Mstructure	49.6	41.4	31.8	26.9	20.9	tonnes	
	Mtotal	398	387	378	383	382	tonnes	

L1/GEO: Inputs
 - L1 Colony \Leftrightarrow GEO "Tug"

L1/GEO: Assumptions/Outputs

- L1 Colony \Leftrightarrow GEO "Tug"
- Required for Phases 2-4
- 45,000 tonne SPS delivered to GEO in 14 days
- Solar Electric Propulsion
- Propellant: Xenon, purchased from Earth-based supplier

	Phases	2	3	4		Assumption Source
	Type	Xenon	Xenon	Xenon		SercellRoss: Exisiting tecenology
	Isp	${ }_{3500}$	4000	5000	sec	Ross: Technological progress
	Round.trip ToF	14.0	14.0	14.0	days	Ross: wo weeks
	Thrust per unit power	41.9	47.9	59.9	NMW	Ross: Scaled with lsp
Assumptions	Thust per unit mass	460.0	920.0	1840	Ntoone	Ross: Twice each phase
	Structure Factor	0.10\%	0.10\%	0.10\%	\%	Ross
	Tankage fator	10\%	${ }^{8 \%}$	5\%	\%	Ross:Technological regress
	Power Factor	2.50	1.00	0.50	tomnesMW	arker
	Deltav	3241	${ }^{324}$	${ }^{324}$	m/s	
	Thrust	120.7	120.7	${ }^{120.7}$	N	
	Power	2.88	2.52	2.01	Mw	
	Mprop	4.25	3.72	2.98	tomes	
Outputs	Mtrrusters	0.262	0.131	0.066	tomes	
	Msolararay	7.20	2.52	1.01	tomes	
	Mstructure	52.2	47.7	46.2	tones	
28 May 2002	Mital	45064	45554	45052	tomns	154

Continuous Thrust Calculation

- Propellant for tug
- Edelbaum's equation:

$$
\Delta \mathrm{V}_{2}=\mathrm{V}_{0}{ }^{2}+\mathrm{V}_{1}{ }^{2}-2 \mathrm{~V}_{0} \mathrm{~V}_{1} \cos (\pi i / 2)
$$

- where $\mathrm{V}_{0}, \mathrm{~V}_{1}=$ circular orbital velocities, $i=$ change in inclination in degrees
- $\Delta \mathrm{V}=3.24 \mathrm{~km} / \mathrm{s}$ from L1 to GEO
- SPS: $\mathrm{m}_{\mathrm{pl}}=45,000$ tonnes
- Roundtrip time: $\mathrm{t}=14$ days,
- Thrust: $\mathrm{T}=\Delta \mathrm{V} * \mathrm{~m} / \mathrm{t}=121 \mathrm{~N}$
- Total thruster mass $=60.7$ tonnes

- Tug: roundtrip to GEO
- $m_{p}=4,660$ tonnes/trip
- For $\mathrm{I}_{\mathrm{sp}}=3200 \mathrm{~s}$ in Phase 1

Near-Earth Asteroid Retrieval

- Asteroid Retrieval Vehicle
- Lunar derived monopropellant for propulsion out to asteroid
- $\mathrm{Al}_{2} \mathrm{O}_{3}$ made from lunar regolith
- $\mathrm{I}_{\mathrm{sp}}=315 \mathrm{sec}$
- Rocket equation:

$$
m_{p}=m_{0}\left(1-\exp \left[-\Delta V /\left(\mathrm{g}_{\mathrm{sp}}\right)\right]\right)
$$

- where $\mathrm{m}_{0}=\mathrm{m}_{\mathrm{st}}+\mathrm{m}_{\mathrm{pl}}$
- Closest asteroids (in energy)
- $\Delta \mathrm{V}=3900 \mathrm{~m} / \mathrm{s}$
- Asteroid retrieval vehicle sent out in Phase 2
- Mass driver propulsion assumed for return journey
- Returns in Phase 3
- Mass Payback Ratio assumed to be 1000^{1}
- Asteriod of mass $\sim 10^{7}$ tonnes, diameter $\sim \mathbf{3 0 0} \mathbf{~ m}$

Transportation: Conclusions

- Earth/LEO
- NOVA-class, 250-tonnes-to-LEO heavy lift launch vehicle is assumed
- LEO/L1
- 1-3 day trip times are feasible with nuclear propulsion and H_{2} propellant
- L1/GEO
- Solar electric propulsion
- Consider argon or oxygen
- Readily available from lunar regolith
- Asteroid Retrieval
- $\mathrm{Al}_{2} \mathrm{O}_{3}$ monopropellant to rendezvous
- Mass driver assumed for return
- Other propulsion systems to consider
- Beamed energy from colony to tug
- Solar sails

Radiation Shielding

- Space environment near chosen orbit dictates radiation shielding necessary

Data taken from spacecraft data
Mass shielding models of Earth's magnetic field Radiation dose required to be lo

Storm shelters
Storm shelters for solar flares

Orbit

Personnel

Radiation Shielding

- Requirement: Personnel dosage below 0.25 rem/year
- L1 orbit requires radiation shielding
- Solar cosmic particle radiation flux is uni-directional due to Earth's magnetic field, and is the most harmfull
- Omni-directional shielding for galactic cosmic rays
- Allow for win

Radiation Shielding

- Little extra external shielding needed
- 4.3 cm of aluminum shielding necessary ${ }^{1}$
- 3.8 cm layer of aluminum provided by structure
- Use slag from refining, in non-rotating outer toroidal shells
- 12 cm of slag shielding necessary ${ }^{2}$
- 31,500 tonnes of slag for Heliopolis
- Solar flare storm shelters
- Need thick walls to handle large isotropic radiation flux
- Conservative slag thickness $=\mathbf{3 . 0} \mathbf{~ m}$
- Storm shelters for 600 people each, and assume $10 \mathrm{~m}^{3} /$ person - Mass per storm shelter = 7,730 tonnes
- For 2,900 people, need $\mathbf{5}$ shelters
- Total storm shelter mass $=\mathbf{3 8 , 6 0 0}$ tonnes

Radiation Shielding

- Conclusions
- External Shielding
- Aluminum structure and slag from refining is adequate
- Aluminum structure provides 90% of the necessary shielding
- For a slight increase in structure thickness, slag is unnecessary
- May simplify construction
- Solar Flare Storm Shelters
- Slag is adequate
- Five shelters necessary at 38,600 tonnes each

Technical Study: Overview

- Design Problems/Requirements \& Solutions
- Shanty Town Description
- Heliopolis Description
- System-Level Summary
- Discussion of Economic Model
- Explanation of Subsystem Models
- Summary

Conclusions (1 of 3)

- O'Neill was right: world market exists to begin supply of solar energy
- World demand of 612 QBTUs ${ }^{1}$ far exceeds world production capability of 496 QBTUs ${ }^{2}$
- SPS production can begin to supply unmet demand
- Solar energy from SPS cleaner, safer than alternatives
- No risk of toxic wastes/spills
- No risk of explosions or meltdowns
- No people displaced, no land made unusable

Conclusions (2 of 3)

- LSMD study comparable to 1975 Stanford study - Differences reflect 25 years of technological advances
- However: LSMD study represents fundamentally new analysis
- Integrated cost model demonstrates project's economic feasibility
- Technology exists or can be designed to begin project in the next 20 years

Conclusions (3 of 3)

- Economic profit returned in 20 years
- Positive cash flow in 15 years
- Initial investment of $\$ 106$ billion
- Self-sufficiency and internalizing costs critical to project success
- Power requirements dominated by industrial refinery needs
- Project cost driven by food production
- Low mass, but biomass only available from Earth
- Personnel costs surprisingly insignificant

