HELLPOLIS The Next Giant Leap

Chad Kessens, Ryan McDaniel, Melahn Parker, Shane Ross, Luke Voss

Heliopolis Mission

To build a profitable, self-sustaining foothold for humanity in space

Heliopolis: **Space Business Park / Community**

- **Support several industries**
 - Solar power satellites (SPS)*
 - **Communications satellites**
 - Zero-gravity manufacturing
 - Tourism
 - **Asteroid mining**
 - **Capacity for growth** (self-replication)
- Lunar L1 halo orbit \bullet
 - **Continuous sunlight**
 - **Moon-viewing for tourists**
- **Necessary for future space** infrastructure

*Only revenue from SPS modeled

Heliopolis Development Timeline

28 May 2002

Phase 0 (2020-2021)

Shanty Town Construction

- ISS-like modules to L1
- Mass driver to Moon
- 3-month crew rotations
- Cost: 35 B\$ (Y2K)
- People: 0-100

Earth People and Resources

Shanty Town (Earth-Moon L1) Moon Resources

Sun Energy

Phase 1 (2021-2022)

Begin Construction of Heliopolis

- Build first permanent habitation modules
- Construction materials from Moon
- 3-month crew rotations
- Cost: 27 B\$
- People: 100-115
- 0-5% complete

Moon

Heliopolis

Earth

Sun

Phase 2 (2022-2032) Intermediate Construction Stage Permanent habitation Manufacture of SPSs/Comm • Launch asteroid retriever • Cost: 151 B\$ • Revenue: 343 B\$ • People: 115-341 Heliopolis Earth 5-62% complete

GEO Products Moon

Asteroid

Sun

Infrastructure Requirements

- Module fabrication facility
- Heavy-lift launch vehicle (HLLV) services
- Lunar mass driver
- Inter-orbital shuttle
- Ground receiver arrays (rectennas)

Technology Requirements

- Enabling Technology
 - 250-tonne-to-LEO class HLLV
 - Improved automation
 - Nuclear reactor in space
 - Closed–loop recycling

- Enhancing Technology
 - SEP using O2
 - Nuclear thermal propulsion
 - Improved PowerSail efficiency
 - Mass driver propulsion
 - Self-Replicating Machines

Cash Flow Analysis (log scale)

Alaska Pipeline Comparison

	Alaska Pipeline	Heliopoli s
Cost before revenue	22.7 B\$	105 B\$
Time to revenue	2.21 years	15 years
Avg. cost per year before revenue	10.3 B\$	7 B\$
Avg. profit per year	3 B\$	214 B\$ ¹
Energy supplied per year ²	94.5 MBTUs delivered	233 MBTUs produced

Three Gorges Dam Comparison

	Three Gorges Dam	Heliopoli s
Cost before revenue	Dam 26.6 B\$	105 B\$
Time to revenue	20 years	15 years
Avg. cost per year before revenue	1.33 B\$	7 B\$
Avg. profit per year	62.8 B\$ ³	214 B\$ ¹
Energy supplied per year ²	0.54 MBTUs delivered	233 MBTUs produced

28 May 2002

¹Beginning of Phase 4 ²World demand of 612 QBTUs in 2020 ³Revenue; profit figures unavailable

Environmental Impact

Alaska Pipeline	Three Gorges Dam	Nuclear Power	Heliopolis
12 M gallons of oil spilled over last 25 years	Toxic levels of arsenic, mercury, lead, cyanide in water supply; 1.9 million people displaced	Chernobyl affected 7 million, contaminated 155,000 sq.km ¹	Construction of rectennas (but still allows use of land); microwaves not harmful ²

¹Belarussian Embassy website ²1975 Stanford study

Conclusions (1 of 3)

- O'Neill was right: world market exists to begin supply of solar energy
 - World demand of 612 QBTUs¹ far exceeds world production capability of 496 QBTUs²
 - SPS production can begin to supply unmet demand
- Solar energy from SPS cleaner, safer than alternatives
 - No risk of toxic wastes/spills
 - No risk of explosions or meltdowns
 - No people displaced, no land made unusable

Conclusions (2 of 3)

- LSMD study comparable to 1975 Stanford study
 - Differences reflect 25 years of technological advances
- However: LSMD study represents fundamentally new analysis
 - Integrated cost model demonstrates project's economic feasibility
- Technology exists or can be designed to begin project in the next 20 years

Conclusions (3 of 3)

- Economic profit returned in 20 years
 - Positive cash flow in 15 years
 - Initial investment of \$105 billion
 - Self-sufficiency and internalizing costs critical to project success
- Power requirements dominated by industrial refinery needs
- Project cost driven by food production
 - Low mass, but biomass only available from Earth
 - Personnel costs surprisingly insignificant

Technical Study: Overview

- Design Problems/Requirements & Solutions
- Shanty Town Description
- Heliopolis Description
- System-Level Summary
- Discussion of Economic Model
- Explanation of Subsystem Models
- Summary

Orbit Requirements & Options

Requirements

- Fast and cheap access to
 - *Earth* (employees, tourists)
 - **Resources** (Moon, near-Earth asteroids)
 - Market (geosynchronous orbit for SPSs)
- Continuous sunlight
 - Dependent on solar energy
- Favorable to tourists
- Favorable radiation environment

• Options

- Low Earth Orbit (ISS-like, LEO)
- Sun–Synchronous Orbit
- Highly Elliptical Earth Orbit
- Geosynchronous orbit (GEO)
- Earth-Moon L1 halo orbit

Earth-Moon L1 Orbit

- Advantages
 - Fast and cheap access to Resources and Market
 - Orbit outside Earth's deep potential well
 - Resources: Moon and NEAs are easy to access
 - Market: Less energy to GEO than from LEO¹ and less radiation damage to SPSs²

Continuous sunlight

• Eclipses are rare, brief

Favorable to tourists

• Earth and Moon views

Disadvantages

• Far from Earth

• *Earth:* Trip times of one to a few days to and from Earth

Radiation environment

 Not protected by Earth's magnetic field

¹ Impulsive ΔV : 1.2 km/s (Ross [2002]) compared to 3.5 km/s (Lewis [1991]) ² Traversing the Van Allen Belts between LEO and GEO can do great damage to SPSs, lowering the efficiency of solar panels by upwards of 50%; L1 is beyond the Van Allen Belts

Space Highways

- From L1, can access the InterPlanetary Superhighway
 - Low fuel transfers to/from Earth-Moon space
 - Uses natural pathways connecting Lagrange points in Sun-Earth-Moon system

28 May 2002 M.W. Lo and S.D. Ross [2001] The Lunar L1 Gateway: Portal to the Stars and Beyond. *AIAA Space 2001 Conference, Albequerque, New Mexico, 2001* (after Farquhar [1977]).

Space Highways

• Earth-Moon L1 Halo Orbit "Portal"

- Low fuel access to lunar orbit, Earth orbit, and beyond
- Near-Earth asteroid retrieval

Space Highways

• LEO to Earth-Moon L1

 Expends 30% less on-board fuel than a Hohmann transfor

Ross, S. D. [2002] Low energy transfers to the moon using resonance targeting, in preparation.

Radiation Environment

Earth–Moon L1

- Not protected by Earth's magnetic field
- Mostly unidirectional field of solar cosmic rays
 - High energy (1 GeV) protons, electrons, and heavy nuclei
- Significant shielding necessary
 - 12 cm Aluminum¹
 - Slag from refining
- ¹ Adapted from Tascidne $L R^{4}$ s insuming sheeding proportioned to exp(-t), where t is shield thickness and keeping dose below 0.25 rem/year

 $^{2}\,$ Assuming slag from refining has the same shielding ability as lunar regolith

Structure Requirements (1 of 3)

- Human physiology \rightarrow artificial gravity \rightarrow rotation
- Human physiology \rightarrow slow rotation
- Major radius 894m creates 1g at 1rpm
- Rotating environment \rightarrow axial symmetry
- Options (see next slide):
 - SphereCylinder

Structure Requirements: (2 of 3)

Structure Requirements: (3 of 3)

- Minimum construction time → minimum structural material for required area, volume
- Radiation shielding requirements → minimum projected area
- Torus best satisfies requirements

Technical Study: Overview

- Design Problems/Requirements & Solutions
- Shanty Town Description
- Heliopolis Description
- System-Level Summary
- Discussion of Economic Model
- Explanation of Subsystem Models
- Summary

Initial Construction Phase: Requirements

- Earth-built, Earth-launched components
- Minimum time to first launch
- Minimum development cost
- Facility must be at L1
 - Need a HLLV¹ capable of launching to this altitude
- Solution: "Shanty Town" (see next slide)

¹Heavy-Lift Launch Vehicle

Shanty Town: Overview

- Assembled primarily from build-to-print ISS modules
- ~100 people inhabit 17
 "Zvezda" style modules
- 63 fabrication modules begin construction of Heliopolis
- 25 connectors, 50 storage modules, 8 docking ports, and 3 "recreation" modules complete the station

Shanty Town Mass Breakdown

Shanty Town: Positioning

- Orbit at L1 maintained so that radiation is essentially unidirectional
 - Symmetric positioning of station eliminates solar radiation torque; solar array creates large solar radiation force
 - Ion drive used to counteract radiation force

Technical Study: Overview

- Design Problems/Requirements & Solutions
- Shanty Town Description
- Heliopolis Description
- System–Level Summary
- Discussion of Economic Model
- Explanation of Subsystem Models
- Summary

Heliopolis

- Toroid structure of double-walled aluminum
- Material largely extraterrestrial
- 20 years to build
- 894.3m (r_o) x 36m (r_i) 4.1M m³ internal volume 212,000 tonnes total mass

Heliopolis (cont.)

- Self-sufficient (except for limited specific goods)
- Construction platform for Earth-orbit and extraterrestrial consumption
- Staging post for deep space missions

Industrial-Tourist Complex

- The industries were selected for their economic feasibility, usefulness, and ease of integration with the space colony's goals and purpose
- Asteroid Mining Provides raw materials for colony construction and space undertakings, and rare metals as cash crop for Earth
- Manufacturing Initially directed towards station construction; later produces consumer goods for use in space, or exotic goods for export to Earth
- SPS, Climate Control Uses assembly bays and raw materials required for colony construction and returns power and productive climate to Earth
- Tourism Habitat for colony workers doubles as a recreational hotel with scenic excursions to the industry facilities and into space

Technical Study: Overview

- Design Problems/Requirements & Solutions
- Shanty Town Description
- Heliopolis Description
- System-Level Summary
- Discussion of Economic Model
- Explanation of Subsystem Models
- Summary

Model Interface

- Models exchange a set of parameters among themselves
- Represented graphically for rapid understanding
- Approximately 515 exchange parameters (see next chart)

Data Trar	15	S f	e	r	V	a	tr		K :								
Parameters	Pa	as	Se	ed		Be '	tw	/e	en		/IC	bd	el	S			
	Atmosphere	Attitude & Orbit	Cost	Food Production	Habitat	Manufacturing	Milling & Primary	Personnel	Power	Radiation Shielding	Recycling	Refining	Structures	Systems	Thermal	Transportation	
Atmosphere	na	-	3	-	-	-	-	1	2	-	5	-	9	4	2	1	
Attitude & Orbit	-	na	2	-	-	-	-	1	3	1	-	-	8	4	3	3	
Cost	-	-	na	-	-	6	-	-	-	-	-	-	-	-	-	6	
Food Production	8	-	/	na	-	-	-		2	-	3	-	8	4	2	4	
Habitat		-	-3	-	na		1 8	-	2 3	_	2	-	11	5	2	-	
Manufacturing	_	-	<u>১</u>	-	-	na 9	0	1	3 3	_	2	22	17	5 5	2		
Milling & Primary Personnel	- 13	-	4	-	-	9	11a 2	na	3 2	-	2 4	22	11	5 5	2	- 3	
Personner	15		4	0			_	1 1	na		4		14	7	2	5	
Radiation Shielding		1	-					1	Па	na		_	9	2		-	
Recycling	4	-		1	_		2	1	2		na	_	8	4	2		
Refining		1_	2			2	2 13	1_	2	2		na	11	5	2	1	
Structures	1	11	21			2	1	1_	2	7	1	на	na	21	2	2	
Systems	1_	9	11	1	1	8	5	1	3	4	1	5	10	na	1	9	
Thermal	_	-				-	-	1_	2			-	15	4	na	-	
Transportation	_	_	3		_			1	2	_	_	1	8	5	2	na	

Inputs from

Systems Model

 Records and displays system properties such as mass, volume, station size and shape

Easiest way to understand system behaviour

 Also responsible for publishing system variables: total power needs, total mass, project phase, etc.

System & project data

Subsystem characteristics

Systems (cont.)

TOTAL	212678	tonnes
Food Production	21718	tonnes
Support	3080	tonnes
Atmosphere	2818	tonnes
Habitat	2	tonnes
Personnel	210	tonnes
Recycling	49	tonnes
Attitude & Orbit	5	tonnes
Transportation	100	tonnes
Structures	169698	tonnes
Industrial	18078	tonnes
Manufacturing	10909	tonnes
Milling & Primary	381	tonnes
Refining	6433	tonnes
Power	129	tonnes
Thermal	225	tonnes

Mass Breakdown: Station

Systems (cont.)

0.702	MW
.386	MW
.702	MW
.684	MW
.500	MW
.518	MW
.029	MW
.000	MW
.585	MW
.894	MW
.012	MW
.679	MW
	386 702 684 500 518 029 000 585 894 012

Т

Technical Study: Overview

- Design Problems/Requirements & Solutions
- Shanty Town Description
- Heliopolis Description
- System-Level Summary
- Discussion of Economic Model
- Explanation of Subsystem Models
- Summary

Cost Assumptions – Phase (-1)

- Phase (-1) Research, Development, Design, and
- Start Date: 2015
- Duration: 5 years
- RDT&E = TFU * ICM * Launch Service Scalar
 - Assume most modules will be built to ISS specs
 - Habitat, Adapter, Communications, Storage, Docking
 - Theoretical First Unit (TFU) cost small
 - Initial Cost Multiplier (ICM) also small using existing technology
 - Other modules scale as ratio of mass to ISS Habitat Module
 - Recreation, Fabrication
 - Assume TFU for Heliopolis is First Livable Section
 - Calculate TFU cost as cost of ISS scaled by mass ratio
 - Assume development cost scales with launch cost
- 28 May 2002

Testing

- Reliability less important because easier to fix problems
- Mass less of a design concern

49

Cost Assumptions – Phase (-1)

- Assume Technological Advances
 - Ground Fabrication Plants can keep up with module production demand
 - Launch Services can keep up with launch demand
 - Total Cost of Phase (-1): \$8.83B
- No Revenue Generated
- Assume Government guarantees investment
 - Interest Rate = 10%

Cost – Phase (-1)

•Assume total phase cost evenly distributed amongst years of phase

Cost Assumptions – Phase (0)

- Phase (0) Construction of Shanty Town & Lunar Mining Plant
 - Assume cost of Lunar Mining Plant is correctly estimated by O'neill, and inflate to M\$Y2K
 - Total Lunar Mining Plant Cost = \$8,884.2M
 - Cost of phase driven by module construction and launch services
 - Assume launch services to L1 cost \$2,000 / kg in 2020
 - Independent developer creates NOVA-class vehicle technology capable of launching 250 tonnes to L1
 - Lower launch service cost decreases cost of construction (see slides 48, 49)
 - Assume a learning curve for the mass production of modules

Cost Assumptions – Phase (0)

- Learning Curve formula¹
 - X = # of modules to be built
 - S = Learning Curve slope (%)
 - 95 if (x < 10)
 - 90 if (10 <= x <= 50)
 - 85 if (x > 50)
 - $B = 1 \ln(100\%/S) / \ln(2)$
 - L = Learning Curve Factor = X ^ B
 - Effective number of units at full TFU cost
 - Production cost = TFU cost * L

Cost Calculations – Phase (0)

- Calculate size based on necessary production output of fabrication modules
 - Driven by size of completed Heliopolis
 - Driven by necessary output of SPSs to break even within a time constraint which will attract investors
- Personnel rotation every 3 months
 - Health considerations Zero-g environment in this phase
 - Increases mass to be sent up (i.e. Cost of Launch Services)

Cost Breakdown – Phase (0)

Element	Cost in	Cost Estimating Relationship
Launch Services	M\$Y2,K071.5	\$2K / kg ¹
Habitat	767.7	# of Modules ^ (Learning Curve Power) * \$ / ISS habitat module ² * ratio of the required mass of our module to that of ISS habitat module * launch service scalar
Recreation	167.4	# of Modules ^ (Learning Curve Power) * \$ / ISS habitat module ² * ratio of the required mass of our module to that of ISS habitat module * launch service scalar
Fabrication	17,779.0	# of Modules ^ (Learning Curve Power) * \$ / ISS habitat module ² * ratio of the required mass of our module to that of ISS habitat module * launch service scalar
Power	18.8	Energy Required * (% Energy supplied by Solar Power * M\$ / MW to build solar array ³ + % Energy supplied by Nuclear Power * M\$ / MW to build nuclear generator ⁴ + % Energy supplied by Dynamic Power * M\$ / MW to build dynamic generator ⁵) *
Communications	2.6	launch service scalar (4516.7 + 1129.1 * Diameter (in m) + 691 * Life-time (yrs) + 359.9 * Range (AU))/1000 * launch service scalar (from LSMD
Storage	406.5	<i>CER)</i> # of Modules ^ (Learning Curve Power) * \$ / ISS storage module ⁶ * ratio of the required mass of our module to that of ISS storage module * launch service scalar
Ports	1,082.3	# of Modules ^ (Learning Curve Power) * \$ / ISS port ⁷ * ratio of the required mass of our port to mass of ISS port * launch
Personnel	5.0	service scalar Salaries + food + supplies
Lunar Mining Facility	8,884.2	Inflated cost from O'Neill's papers
Total	35,185.0	Sum of elements Chad

Cost Breakdown – Phase (0)

• Total = \$35,185.0M (Y2K)

Cost – Phases (1 - 4)

- Phases (1 4): Construction of Heliopolis
 - Internalize all costs possible
 - Food, Manufacturing, Power, Milling, Refining, etc.
 - Only get from Earth what is absolutely necessary
 - Biomass, Soil, Water, Atmospheric Gases
 - Some unavoidable recurring costs
 - Salaries, Carbon for Refining, Propellant, Launch Services

• Duration of each phase determined by

28 May 2002

% of Heliopolis Complete

Cost – Phase (1)

- Duration = 0.9 years
- Cost driven by Launch Services
 - Cost of component purchase minimal raw materials
 - Biomass, Atmosphere, Simple Supplies
- Personnel cost is secondary driver
 - Assume # of personnel scales with % station complete
 - Earth still supplies all food requirements for Phase
 1

Cost Breakdown – Phase (1)

Element	Cost (M\$Y2K)	Assumptions	
Atmosphere	0.14	\$0.001M / tonne of gas ¹	• •
Attitude & Orbit	0.85	\$1M / tonne of propellant ² , \$0.2M / thruster	3
Food Production	2.02	\$128 / tonne biomass ⁴ , \$20 / tonne soil ⁵ , \$3	/ tonne
Habitat	3.15	Water ⁶ 0.1 tonnes of supplies / person ⁷ , \$0.1M / ton	ne ⁸
Launch Services	27,301.28	\$1.588M / tonne to launch in during this pha	se ⁹
Manufacturing	0.00	Internalized cost - material from moon, labor	
Milling & Primary	0.00	Internalized cost - material from moon, labor	
Power	0.00	Internalized cost - material from moon, labor	
Radiation Shielding	0.00	Internalized cost - material from moon, labor	
Recycling	0.00	Internalized cost - material from moon, labor	
Refining	0.02	\$425 / tonne of raw Carbon ¹⁰	
Structures	0.00	Internalized cost - material from moon, labor	
Thermal	0.00	Internalized cost - material from moon, labor	
Personnel	11.641	\$7K / tonne of food ¹¹ , \$0.1M for laborer ¹² , \$0 manager ¹³	0.16M for
Total Cost of Phase (1)	\$27,319.10M	See notes for references	

Cost – Phase (2)

- Duration = 10.0 years
- Begin producing SPSs and earning revenue
- Costs continue to be driven by launch services
 - Much higher than Phase (1) due to duration
- Secondary Costs:
 - Propellant
 - To initiate spin-up
 - For Asteroid Retrieval Mission
 - For Solar Power Satellites
 - Biomass
 - Personnel

Cost – Phase (2)

Personnel increases as % of station complete, but

- now assume station economy only loses 22% of their salary
 - Personnel pays station for own food, lodging, etc.
 - 22% based on:
 - Avg. profit margin of American company¹
 - Avg. % of salary savings of American household²
 - Guestimate on % external company's cost not paid to station³

station now houses non-working personnel

Cost Breakdown – Phase (2)

Element	Cost (M\$Y2K)	Assumptions	
Atmosphere	1.40	\$0.001M / tonne of gas	
Attitude & Orbit	24.53	\$1M / tonne of propellant, \$0.2M / thruster	
Food Production	20.07	\$128 / tonne biomass, \$20 / tonne soil, \$3 / to	onne
Habitat	5.41	0.1 tonnes of supplies / person, \$0.1M / tonne	
Launch Services	150,836.32	\$0.8903M / tonne to launch in during this phase	se
Manufacturing	1.63	\$1M / tonne of propellant (for SPSs)	
Milling & Primary	0.00	Internalized cost - material from moon, labor	
Power	0.00	Internalized cost - material from moon, labor	
Radiation Shielding	0.00	Internalized cost - material from moon, labor	
Recycling	0.00	Internalized cost - material from moon, labor	
Refining	1.99	\$425 / tonne of raw Carbon	
Structures	0.00	Internalized cost - material from moon, labor	
Thermal	0.00	Internalized cost - material from moon, labor	
Personnel	6.55	\$7K / tonne of food, \$0.1M for laborer, \$0.16M	1 for
Total Cost of	\$150,897.89	manager See notes on slide 59 for all references	
Phase (1)	M		

Cost – Phase (3)

- Duration = 6.7 years
- Asteroid has been retrieved
 - No more Carbon needed from Earth
 - Precious Metal Revenue possible
- Cost still driven by Launch Services

Cost Breakdown – Phase (3)

Element	Cost (M\$Y2K)	Assumptions	
Atmosphere	1.27	\$0.001M / tonne of gas	
Attitude & Orbit	89.62	\$1M / tonne of propellant, \$0.2M / thruster	
Food Production	18.21	\$128 / tonne biomass, \$20 / tonne soil, \$3 / t	onne
Habitat	17.26	0.1 tonnes of supplies / person, \$0.1M / tonne	9
Launch Services	50,099.60	\$0.3254M / tonne to launch in during this pha	se
Manufacturing	47.01	\$1M / tonne of propellant (for SPSs)	
Milling & Primary	0.00	Internalized cost - material from moon, labor	
Power	0.00	Internalized cost - material from moon, labor	
Radiation Shielding	0.00	Internalized cost - material from moon, labor	
Recycling	0.00	Internalized cost - material from moon, labor	
Refining	0.00	Internalized cost - material from moon & aster	oid,
Structures	0.00	labor Internalized cost – material from moon, labor	
Thermal	0.00	Internalized cost - material from moon, labor	
Personnel	26.60	\$0.1M for laborer, \$0.16M for manager	
Total Cost of Phase (1)	\$50,299.57M	See notes on slide 59 for references	

Cost – Phase (4)

Steady-state

• Cost Drivers

- Propellant
 - SPSs
 - Attitude & Orbit
- Launch Services
 - Assume that by this time, cost is \$200 / kg
 - Significantly less shipping
 - No additional Atmosphere, Biomass, etc. required
- Personnel
- Supplies
 - Still need small supplies from Earth (e.g. medical
- 28 May 2002 supplies)

Cost Breakdown – Phase (4)

Element	Cost (M\$Y2K)	Assumptions	
Atmosphere	0.00	\$0.001M / tonne of gas	
Attitude & Orbit	18.62	\$1M / tonne of propellant, \$0.2M / thruster	
Food Production	0.00	\$128 / tonne biomass, \$20 / tonne soil, \$3 / t	tonne
Habitat	28.83	Water 0.1 tonnes of supplies / person, \$0.1M / tonn	e
Launch Services	67.83	\$0.2M / tonne to launch in during this phase	
Manufacturing	32.22	\$1M / tonne of propellant (for SPSs)	
Milling & Primary	0.00	Internalized cost - material from moon, labor	
Power	0.00	Internalized cost - material from moon, labor	
Radiation Shielding	0.00	Internalized cost - material from moon, labor	
Recycling	0.00	Internalized cost - material from moon, labor	
Refining	0.00	Internalized cost - material from moon & aster	oid,
Structures	0.00	labor Internalized cost – material from moon, labor	
Thermal	0.00	Internalized cost - material from moon, labor	
Personnel	43.55	\$0.1M for laborer, \$0.16M for manager	
Total Cost of Phase (1)	\$190.95M	See notes on slide 59 for references	

Cost Breakdown by Phase

Phase	Cost in M\$Y2K
	(excluding
-1	8, 830. Est)
0	35,185.0
1	27,319.1
2	150,897.9
3	50,299.6
Total	\$272,532.2
	(YZK)

Cost / Year by Phase

Phase	Cost / Year (in M\$Y2K)
-1	1,766.12
0	22,587.91
1	30,973.11
2	15,089.79
3	7,442.42
4	191.04

Cost by Year

28 May 2002

Revenue Generators

- Solar Power Satellites
 - Assume construct 1 per month
 - Size and output scale with % station complete
 - First satellite produced generates 225 MW
 - Phase (4), satellites produced generate 4500 MW
 - Linear fit between these points
 - Assume SPS lifetime exceeds 30 years
 - No SPS production until beginning of Phase (2)
 - Assume station will sell energy at \$.05 / kW*hr (Y2K)
 - Low end of current competitive prices

Revenue Generators

- Suggested for inclusion in future studies
 - Tourism
 - Generates revenue through all phases
 - Communications Satellites
 - Opportunity Cost of time to build SPSs
 - Precious Metals
 - Generates revenue in phase (3) from asteroid refining
 - Zero-G Manufacturing
 - Opportunity Cost of time to build SPSs

Time to Profit

- Accounting Profit in Year 15
- Economic Profit in Year 20
- Total Economic Profit at start of Phase 4 (Year 25)

\$925,092,412,524

Total Revenue

Cash Flow Analysis by Year

Year

Cash Flow Analysis (log scale)

Cumulative Cash Flow Analysis

Year

Financial Conclusions

- Vital assumptions
 - Launch Services can handle project requirements for \$2K / kg.
 - Construction and development costs scale with launch service
 - Cost of some systems can be "internalized" as opportunity cost (time)
 - Station can produce 1 SPS / month with output based on % of station complete
- Requires \$105B initial investment over first 11 years
- Profitability
 - 15 years to accounting profitability
 - 20 years to economic profitability
 - ²⁸May \$6.9T profit by year 40

Technical Study: Overview

- Design Problems/Requirements & Solutions
- Shanty Town Description
- Heliopolis Description
- System–Level Summary
- Discussion of Economic Model
- Explanation of Subsystem Models
- Summary

Discussion of Subsystem Models

- Industrial Model
 - Manufacturing
 - Milling
 - Refining
- Habitat
- Food Production
- Atmosphere
- Recycling
- Personnel

- Power
- Thermal
- Structures
- Attitude Control
- Transportation
- Radiation Shielding

Industry Model Overview

 Traces production from raw materials through to finished goods: solar power satellites, station components, etc.

 Models draw data from car manufacturing plants, aluminum production facilities, American industrial averages, etc.

Power, staff, structural needs

Trade goods

Waste

Raw

materials

Industry Model Assumptions

- Time-Independent Assumptions:
 - 20% waste heat
 - Average complexity is equivalent to car manufacturing
 - Logarithmic scaling of time-dependent variables

• Time-Dependent Assumptions:

Phase	Productivit	Percent Non-
	У	Terrestrial
	Multiplier	<u> </u>
1	2	0
2	2	10
3	5	33
4	10	99

Industry Model Results (1 of 2)

Station Power Usage

- Personnel employed peaks at 360 in phase 2, settles to ~340 in phase 4
- Requires 18,000 tonnes, 27,000 m³ of facilities and machinery in phase 4
- Uses ~430 MW of power in phase 4

Industry Model Results (2 of 2)

- Imports ~750 tonnes/month of material from Earth
- Exports 1 4.5 GW SPS and 2 Ansible¹-class satellites/month by phase 4

¹From 2000 LSMD study

28 May 2002

Industry Model Manufacturing Module

- Inputs feedstocks and primary materials (electronics, e.g.)
- "Builds" finished goods as required for profit by Cost client
- Model draws data from car manufacturing plants, aluminum production facilities, and O'Neill's SSI report on space-based manufacturing

Feedstock

Trade goods

Power, staff,

structural needs

Waste

Industry Model Manufacturing: Process

• Sample calculation block: assembly of hull sheeting for construction of Heliopolis

	Hull	Sheeting, Phase 1
AI 6061-T6 Input	3431.050 tonnes/month	Calculation
Steel Input	183.381 tonnes/month	Calculation
Hull Sheeting Output	3614.432 tonnes/month	Calculation (structural material/duration of phases 1-3)
Energy Usage	0.986207 MW-hr/tonne	Calculation (numbers based on Ford's Saarlouis plant; 1780 cars/day)
Power	4.951 MW	Calculation
Waste Power	4.951 MW	Calculation
Necessary Area	1620.210 m2	Calculation (scaling of RBAAP)
Ceiling Height	4 m	WAG
Necessary Volume	6480.841 m3	Calculation
Necessary Mass	6563.808 tonnes	O'Neill ("New Routes to Manufacturing in Space"); half manufacturing, hal
Work Rate	25.6218 work-hr/tonne	Calculation (numbers based on Ford's Saarlouis plant)
Productivity Multiplier	2 #	
Personnel	194 #	Calculation

Industry Model Milling Module

- Converts processed/refined materials into industry-usable feedstocks (i.e., milling) Feedstock feedstocks
 - Also keeps track of "primary production" - electronics, etc.
 - Data come from US gov't and industry; assumed scalability

structural needs

Power. staff.

Waste

Required

Industrial

materials

Industry Model Milling: Process

- Inputs required feedstocks from Manufacturing
- Calculates required material supplies
- Outputs available feedstocks

Aluminum Milling		
Raw Aluminum Input	20.952 tonnes/month	Calculation
Processing Efficiency	98 %	WAG
Aluminum Stock Output	20.533 tonnes/month	Calculation (per capita US productivity; USCB)
Scrap Output	0.419 tonnes/month	Calculation
Energy Usage	0.308 MW-hr/tonne	
Power Efficiency	80 %	WAG
Power	0.000 MW	Calculation
Waste Power	0.000 MW	Calculation
Necessary Area	8050.507 m2	Calculation (scaling of RBAAP, 5-1 better than 1940s, offset of 100 m2)
Ceiling Height	4 m	WAG
Necessary Volume	32202.027 m3	Calculation
Necessary Mass	805.051 tonnes	WAG (100 kg/m2)
Work Rate	12.496 work-hr/tonne	Calculation (ALCOA's Troutdale plant)
Automation	95 %	Mike's numbers from 1st term
Personnel	3 #	Calculation

Industry Model Refining Module

- Deals with resources from raw stage to first usable form
- Data taken from US Census Bureau and industry reports (ALCOA, e.g.)
- Sized by requirements from Milling client

Propellant

Industrial stock

Power, staff, structural needs

Waste

Raw

materials

Industry Model Refining: Process

SiO2-2MgO Input	21659.081	tonnes/month	
aO Input	34528.926	tonnes/month	
i Input	4323.812	tonnes/month	
Mg Output	7483.935	tonnes/month	
SiO2-2CaO Output	53027.884	tonnes/month	
SiO2-2CaO Reductio	'n		
SiO2-2CaO Input	53027.884	tonnes/month	
CaO Output	34528.926	tonnes/month	
SiO2 Output	18498.958	tonnes/month	
Energy Usage	0.000	MW-hr/tonne	From enthalpies
Efficiency	80	%	WAG
Power	0.000	MW	Calculation
Vaste Power	0.000	MW	Calculation
SiO2 Reduction			
SiO2 Input		tonnes/month tonnes/month	
SiO2 Input Si Output	4373.313		
BiO2 Input Bi Output D2 Output	4373.313 4925.667	tonnes/month	From enthalpies
SiO2 Input Si Output D2 Output Energy Usage	4373.313 4925.667 4.204	tonnes/month tonnes/month	From enthalpies WAG
SiO2 Input Si Output D2 Output Energy Usage Efficiency	4373.313 4925.667 4.204	tonnes/month tonnes/month MW-hr/tonne %	
SiO2 Input Si Output D2 Output Energy Usage Efficiency Power	4373.313 4925.667 4.204 80	tonnes/month tonnes/month MW-hr/tonne % MW	WAG
SiO2 Input Si Output D2 Output Energy Usage Efficiency Power Waste Power	4373.313 4925.667 4.204 80 67.508	tonnes/month tonnes/month MW-hr/tonne % MW	WAG Calculation
SiO2 Input SiO2 Input D2 Output Energy Usage Efficiency Power Waste Power MgO Production Mg Input	4373.313 4925.667 4.204 80 67.508 13.502	tonnes/month tonnes/month MW-hr/tonne % MW	WAG Calculation
SiO2 Input SiO2 Input D2 Output Energy Usage Efficiency Power Waste Power MgO Production Mg Input	4373.313 4925.667 4.204 80 67.508 13.502 31.425	tonnes/month tonnes/month MW-hr/tonne % MW MW	WAG Calculation
SiO2 Input SiO2 Input D2 Output Energy Usage Efficiency Power Vaste Power MgO Production Mg Input D2 Input	4373.313 4925.667 4.204 80 67.508 13.502 31.425 20.683	tonnes/month tonnes/month MW-hr/tonne % MW MW tonnes/month	WAG Calculation
SiO2 Input SiO2 Input D2 Output Energy Usage Efficiency Power Vaste Power MgO Production Mg Input D2 Input MgO Output	4373.313 4925.667 4.204 80 67.508 13.502 31.425 20.683 52.108	tonnes/month tonnes/month MW-hr/tonne % MW MW tonnes/month tonnes/month	WAG Calculation
SiO2 Input SiO2 Input D2 Output Energy Usage Efficiency Power Waste Power MgO Production Mg Input D2 Input MgO Output Energy Usage	4373.313 4925.667 4.204 80 67.508 13.502 31.425 20.683 52.108	tonnes/month tonnes/month MW-hr/tonne % MW MW tonnes/month tonnes/month tonnes/month MW-hr/tonne	WAG Calculation Calculation
SiO2 Input SiO2 Input O2 Output Energy Usage Efficiency Power Waste Power MgO Production Mg Input O2 Input MgO Output Energy Usage Efficiency Power	4373.313 4925.667 4.204 80 67.508 13.502 31.425 20.683 52.108 -4.146	tonnes/month tonnes/month MW-hr/tonne % MW MW tonnes/month tonnes/month tonnes/month MW-hr/tonne %	WAG Calculation Calculation

- Sample calculation block: reduction of lunar olivine
- Checks for closed loops – flags net inputs or outputs (italics)

Habitat Model

- Characterizes the living spaces of Heliopolis
 - Space per person (pps) increases ~33% with each phase to reflect the increasin standard of living within the colony

Area

Mass

90 Melahn

Space requirements

Population

Some components, such as public space, shops & services, are not present in ini volume shanty phase
 Phase 3 colony has spaces comparable to Stanford Torus study in 1976

Completed colony has projected area p

person comparable to New York City

28 May 2002

Habitat Model Spaces

Spaces Considered

- Living Quarters bed, bath, kitchen, den, dining rooms
- Entertainment cinema, theatre, video games, internet
- Public space parks, open fields, gardens
- **Recreation** exercise equipment, track, swim pool
- Shops general & grocery store
- Service Industry personal goods
- Offices government, trade, accounting
- Hospital telemedicine robotic facility
- School library, teleducation facility
- Cafeteria food services away from home
- Walk ways escalators, moving floors, light rail

28 May 2002 Work Decomposition

Habitat Model Notes

- Space requirements per person for each phase are presented in next 4 tables
- Characterization of Habitat for each phase presented in final chart
- Numbers give idea how habitat is expected to grow in
 28 Mag 20 22 e and comfort

Habitat Phase 1 Assumptions

Habitat Space per Person	mass	volume	area	height	power normal	power emergenc y	metal waste	plastic waste
Section	kg/m2	m3/pps	m2/pps	m	kW/pps	kW/pps	kg/monthpps	kg/monthpps
Living Quarters	1	10	5	2	0.05	0.005	0.5	1.0
Entertainment	1	3	1	3	0.1	0.001	0.0	0.0
Public Space	0	0	0	0	0.02	0	0.0	0.0
Cafeteria	1	7.5	3	2.5	0.1	0.003	0.0	0.2
Recreation	3	9	3	3	0.1	0.003	0.0	0.0
Shops	0	0	0	0	0.05	0	0.0	0.1
Service Industry	0	0	0	0	0.05	0	0.0	0.0
Offices	1	5	2	2.5	0.05	0.002	0.0	0.0
Hospital	1	1.25	0.5	2.5	0.1	0.1	0.1	0.1
School	1	2.5	1	2.5	0.03	0.001	0.0	0.0
Walkways	1	9	3	3	0.02	0.003	0.0	0.0
Totals	1.32	47.25	18.5	2.55	0.67	0.118	0.6	1.4

28 May 2002 Work Decomposition

*Values for space requirements scaled down ~80% from 1975 Stanford Study

Habitat Phase 2 Assumptions

Habitat Space per Person	mass	volume	area	height	power normal	power emergency	metal waste	plastic waste
Section	kg/m2	m3/pps	m2/pps	m	kW/pps	kW/pps	kg/monthpps	kg/monthpps
Living Quarters	8	100	40	2.5	0.1	0.04	1.5	0.8
Entertainment	8	5	1	5	0.15	0.001	0.0	0.0
Public Space	4	300	10	30	0.02	0.01	0.0	0.0
Cafeteria	6	2.5	1	2.5	0.1	0.001	0.0	0.3
Recreation	12	6	2	3	0.1	0.002	0.0	0.0
Shops	20	2.5	1	2.5	0.05	0.001	0.0	0.2
Service Industry	8	2.5	1	2.5	0.05	0.001	0.0	0.0
Offices	8	2.5	1	2.5	0.05	0.001	0.0	0.0
Hospital	6	2.5	1	2.5	0.1	0. 1	0.2	0.2
School	6	5	2	2.5	0.05	0.002	0.0	0.0
Walkways	2	18	6	3	0.02	0.006	0.0	0.0
Totals	7.03	446.5	66	6.77	0.79	0.165	1.65	1.35

28 May 2002 Work Decomposition

*Values for space requirements scaled down ~25% from 1975 Stanford Study

Habitat Phase 3 Assumptions

Habitat Space per Person	mass	volume	area	height	power normal	power emergenc y	metal waste	plastic waste
Section	kg/m2	m3/pps	m2/pps	m	kW/pps	kW/pps	kg/monthpps	kg/monthpps
Living Quarters	8	122.5	49	2.5	0.15	0.049	1.9	0.9
Entertainment	8	10	2	5	0.15	0.002	0.0	0.0
Public Space	4	450	15	30	0.02	0.015	0.0	0.0
Cafeteria	6	2.5	1	2.5	0.1	0.001	0.0	0.4
Recreation	12	6	2	3	0.15	0.002	0.0	0.0
Shops	20	5	2	2.5	0.1	0.002	0.0	0.2
Service Industry	8	5	2	2.5	0.1	0.002	0.0	0.0
Offices	8	2.5	1	2.5	0.05	0.001	0.0	0.0
Hospital	6	5	2	2.5	0.1	0.1	0.2	0.2
School	6	7.5	3	2.5	0.07	0.003	0.0	0.0
Walkways	2	24	8	3	0.02	0.008	0.0	0.0
Totals	6.99	640	87	7.36	1.01	0.185	2.0625	1.6875

28 May 2002 Work Decomposition

*Values for space requirements from 1975 Stanford Study

Habitat Phase 4 Assumptions

Habitat Space					power	power emergenc		
per Person	mass	volume	area	height	normal	У	metal waste	plastic waste
Section	kg/m2	m3/pps	m2/pps	m	kW/pps	kW/pps	kg/monthpps	kg/monthpps
Living Quarters	8	150	60	2.5	2	0.06	2.3	1.2
Entertainment	8	10	2	5	0.2	0.002	0.0	0.0
Public Space	4	750	25	30	0.02	0.025	0.0	0.0
Cafeteria	6	5	2	2.5	0.1	0.002	0.0	0.5
Recreation	12	9	3	3	0.2	0.003	0.0	0.0
Shops	20	7.5	3	2.5	0.1	0.003	0.0	0.2
Service Industry	8	5	2	2.5	0.1	0.002	0.0	0.0
Offices	8	5	2	2.5	0.1	0.002	0.0	0.0
Hospital	6	10.5	3	3.5	0.1	0.1	0.2	0.2
School	6	10	4	2.5	0.1	0.004	0.0	0.0
Walkways	2	30	10	3	0.02	0.01	0.0	0.0
Totals	6.88	992	116	8.55	3.04	0.213	2.578125	2.109375

28 May 2002 Work Decomposition

Habitat Model Results Summary

Life Support Models

 System models for supporting humans in space

Includes:

- Food Production
- Atmosphere
- Recycling

Food Production Model: Overview

- Calculates the nutrition requirements to feed the station population
- Models changes made by plant
 respiration to the atmospheric Power, staf structural ne
- Calculates recyclable waste material and water for processing

Station

Population

Atmospheric

changes

Recyclable Waste

Food Production Model: Assumptions

- Farming technologically stable
 - Crop yields will increase (i.e. bioengineered plants) but not by more than 2x.
 - Equipment will not undergo major technological changes over the current timetable
 - Standard soil farming proven technology and less labor intensive than hydroponics or airponics

Food Production Model: Calculations

²⁸ May 2002 Work Decomposition

Food Production Model: Description

Conditions

- Normal Earth gravity for crops
- Reflected light from station mirrors no need for artificial light
- Climate control optimizes atmospheric conditions for crops
- Provides "visible green spaces" for people on the station

Food Production Model: Results

• Phase 1

- No onboard food production
- Regular re-supply needed
- Small impact to station mass and volume

Staff, Food Production Waste power, Food	0	#
Production O2 change by Food	0.01	MW
Production	0	kg/day
CO2 change by Food Production	0	kg/day
H20 vapor change by Food Production	0	kg/day
Water waste from Food Production	0	kg/day
Food Re spply required from Earth	2.5	tonnes/mon th
Water Re supply required from Earth (recycled)	0	tonnes/mon th
Requested Sunlight, natural	0	W/m2
Mass of soil	0	tonnes
Mass of water	0	tonnes
Mass of biomass	0	tonnes

All values calculated in the model

Food Production Model: Results

• Phase 4

- Onboard food production meets station needs
- No regular re-supply
- Adds significant mass and area requirements on the overall structure
- Staff accounts for about 10% of total population

Staff, Food Production Waste power, Food	361	#
Production O2 change by Food	0.3	MW
Production	5766	kg/day
CO2 change by Food Production	- 8649	kg/day
H20 vapor change by Food Production	43245 0	kg/day
Water waste from Food Production	432	kg/day
Food Re spply required from Earth	0	tonnes/mon th
Water Re supply required from Earth (recycled)	0	tonnes/mon th
Requested Sunlight, natural	400	W/m2
Mass of soil	21622	tonnes
Mass of water	1297 31136	tonnes
Mass of biomass	4	tonnes

All values calculated in the model

Atmosphere Model: Overview

- Book keeps the changes made to the atmosphere
- Sums changes made by other subsystem models

Calculates changes needed from Recycling model to maintain desired atmospheric conditions

 Outputs air circulation equipment requirements

28 May 2002 Work Decomposition

Atmosphere

changes

Changes from

Recycling

Power, staff,

structural needs

Fans required for circulation

Atmosphere Model: Calculations Internal **Circulation fans** Total number * of fans volume per m³ Total power required Power required # fans * by fans per fan Volume required Total volume required Key: # fans * per fan by fans Inputs Total mass of fans # fans * Mass per fan Constants Total mass Total mass Total mass for Calculated ╋ of fans of atmosphere atmosphere model Outputs O_2 or CO_2 or H_2O O_2 or CO_2 or $_{H2O}$ changes change required 28 May 2002 106 Work Decomposition Luke

Atmosphere Model: Results

• Phase 1

- A significant quantity of atmospheric gas must be shipped up from Earth
- CO₂ conversion to O₂ required
- Circulation fans not a significant driver for model output values

Necessary mass (total)	23.8	tonnes
Mass of Atmosphere (Gas only)	23.25	tonnes
Necessary volume	345	m3
Power, Atmosphere	0.17	MW
CO2 change to Recycling	- 115	kg/day
O2 change to Recycling	98	kg/day
H2O change to Recycling	- 230	kg/day
Number of fans	58	#

All values calculated in the model

Atmosphere Model: Results

• Phase 4

Work Decomposition

- A significant quantity of atmospheric gas must be shipped up from Earth
- Plant respiration removes more CO₂ than is created elsewhere
- Circulation fans still not a significant driver for model output values

Necessary mass (total) 2818 tonnes Mass of Atmosphere (Gas only) 2750 tonnes **Necessary volume** 1369 m3 Power, Atmosphere 0.68 MW CO2 change to Recycling 5766 kg/day O2 change to Recycling kg/day - 3315 H2O change to Recycling 5766 kg/day Number of fans 1790 #

All values calculated in the model

Recycling Model: Overview

 Models conversion of waste to usable resources for the station

• Focus on maintaining closed atmospheric and water cycles

Atmospheric balancing

Waste for

processing

Returns inedible biomass as fertilizer for Food Production

 Returns waste metal and plastic to industry for

Work Decomposition rocessing

109 Luke

Power, staff,

structural needs

Processed Biomass/Water

Metal and plastic stock

Recycling Model: Assumptions

- There will be an increase in efficiency for the various recycling processes due to technological improvements
- Industry can make use of plastic and metal waste recovered from the modules

28 May 2002 Work Decomposition

Phase	Productivit y
1	Multiplieŋ
2	1
3	1.5
4	2

Recycling Model: Calculations

For a given recycled material X, these are the basic calculations for determining model requirements

Recycling Model: Calculations

• A typical piece of recycling equipment: Trace contaminant removal unit* -

removes contaminants from the atmosphere

Mass	100	kg
Volume	0.3	m3
Power	150	W
Processing	0.0154	kg/day

Can remove 15.4g/day of contaminants from air

28 May 2002 Work Decomposition *From Spaceflight Life Support and Biospherics

Recycling Model: Calculations

The calculations for model totals are as follows:

²⁸ May 2002 Work Decomposition 113 Luke

The calculations for model totals are as follows

Recycling Model: Results

• Phase 1

- Water processing is the largest task of the model
- Less significant because operating in only a semi-closed loop
- Recycling not a significant driver at system level

Necessary mass, Recycling ¹	31.0	tonnes
Metal waste for Recycling1	0.2	tonnes/mon th
Plastic waste for Recycling1	0.6	tonnes/mon th
Fertilizer from Recycling1	0	tonnes/mon th
Power, Recycling1	0.04	MW
O2 processed by Recycling ²	2.9	tonnes/mon th
H2O processed by Recycling ²	6.9	tonnes/mon th
CO2 processed by Recycling ²	3.5	tonnes/mon th
Water processed by Recycling ²	172.5	tonnes/mon th
Waste from Recycling1	1.1	tonnes/mon th

¹values calculated in the model

28 May 2002 Work Decomposition

Recycling Model: Results

• Phase 4

- Water processing is still the largest task of the model
- Near-closure of life support resource loops
- Recycling not a significant driver at system level – smaller overall mass percentage

Necessary mass, Recycling ¹	52.1	tonnes
Metal waste for Recycling1	7.4	tonnes/mon th
Plastic waste for Recycling1	6.1	tonnes/mon th
Fertilizer from Recycling1	48.5	tonnes/mon th
Power, Recycling1	0.5	MW
O2 processed by Recycling ²	96.5	tonnes/mon th
H2O processed by Recycling ²	12759	tonnes/mon th
CO2 processed by Recycling ²	167.9	tonnes/mon th
Water processed by Recycling ²	4337	tonnes/mon th
Waste from Recycling ¹	0.64	tonnes/mon th

¹values calculated in the model

28 May 2002 Work Decomposition

Life Support Summary

- Biomass must come from Earth
 - Must pay launch cost for biomass
 - Requires efficient recycling and closed resource loops to be economically feasible
- Can be accomplished with current technology
 - Assumed technological improvements do not greatly reduce the overall mass of the models

Personnel Model: Overview

- Book keeps station personnel requirements
- Models community population
 based on industrial town
 (Dearborn, MI)

Staffing requirements

28 May 2002

Work Decomposition

Calculates basic life support requirements for the total population

Heliopolis population

Personnel Model: Assumptions

- In phase 4, there will be a "support" population¹ about 5 times the industrial population²
- In phase 4, there nonworking dependents will make up about 1/3 of the overall population³
- In phase 1, only the necessary people are sent to work on the construction

Phase	Support population fraction	Dependent as fration of working population
1	1.01	0.00
2	1.5	0.18
3	2.75	0.30
4	5	0.50

¹Industrial population includes Manufacturing, Milling & Primary, Refining and Structures

²Based on the Dearborn, MI population

28 May 2002 Work Decomposition

³Based on US statistics and adjusted to meet the productivity requirements of the station

- A fully populated station
 - Majority work as support population for industry
 - Non-working family next largest group
 - Food production third largest
 - Actual industry personnel fourth largest
 - Station maintenance personnel smallest group

 Phase 1 population breakdown

Industrial
 Other Staff
 Support

Staff, Attitude/Orbit	5
Staff, Food Production	0
Staff, Manufacturing	29
Staff, Milling & Primary	22
Staff, Power	9
Staff, Radiation Shielding	1
Staff, Recycling	3
Staff, Refining	4
Staff, Structures	0
Staff, Thermal	25
Staff, Transportation	15
Subtotal of Station Staff	113
Staff, Personnel	1
Support population for Industry	1
Total Working	115
Total Non-working	0
Total Personnel	115
	120 Luke

Phase 4 population breakdown

Staff, Attitude/Orbit	5
Staff, Food Production	361
Staff, Manufacturing	246
Staff, Milling & Primary	35
Staff, Power	26
Staff, Radiation Shielding	5
Staff, Recycling	6
Staff, Refining	14
Staff, Structures	2
Staff, Thermal	17
Staff, Transportation	15
Subtotal of Station Staff	732
Staff, Personnel	1
Support population for Industry	1188
Total Working	1921
Total Non-working	961
Total Personnel	2882
	121

28 May 2002 Work Decomposition Luke

28 May 2002 Work Decomposition

Power Model

- Characterizes Heliopolis's power generation system
 - Utilizes Photovoltaic, Solar Thermal Dynamic, and Nuclear means of production

Emergency Power

Normal Power

> Emergency mode exists when no sola energy is incident upon station or all solar energy generation means are inoperable

Nuclear reactor is sized to meet

^{28 May 2002} emergency requirements

Staff

Array Area

Volume

Mass

Power Assumptions

- Solar Photovoltaic
 - 10 fold power/mass improvement by fourth phase
 - 75% power produced
- Solar Thermal Dynamic
 - 6 fold power/mass improvement by fourth phase
 - 20% of power produced
- Nuclear
 - 6 fold power/mass improvement by fourth phase
 - 5% of power produced

Sized to meet emergency
 28 May 200 power demands
 Work Decomposition

Power Model Notes

 Features of each phases power generation method are shown along with the power subsystems results summary for each phase in a table and chart to follow

Power Assumptions

Power Generation Options		mass	volume	area	Staff	
		kg/MW	m³/MW	m²/MW	pps/MW	
Phase 1	Photovoltaic	5000.00	72.99	3649.64	0.10	
Phase 2	Photovoltaic	2500.00	60.83	3041.36	0.10	
Phase 3	Photovoltaic	1000.00	47.09	2354.60	0.07	
Phase 4	Photovoltaic	500.00	36.50	1824.82	0.048	
Phase 1	Dynamic	6000.00	19.23	1923.08	0.12	
Phase 2	Dynamic	3000.00	15.38	1538.46	0.14	
Phase 3	Dynamic	1500.00	12.82	1282.05	0.10	
Phase 4	Dynamic	1000.00	10.99	1098.90	0.07	
Phase 1	Nuclear	12500.00	60.00	12.00	0.16	
Phase 2	Nuclear	6000.00	50.00	10.00	0.19	
Phase 3	Nuclear	4000.00	40.00	8.00	0.14	
Phase 4	Nuclear	2000.00	25.00	5.00	0.09	

Phase 1 values from SMAAD later phases follow from reasonable technology roadmap

28 May 2002 Work Decomposition

Thermal Model

Thermal Assumptions

• Radiator

- 100 fold improvement in heat rejected per mass by fourth phase
- Removes 60% of waste heat
- Large area required for array

• Heat Pipes

- 10 fold improvement in heat rejected per mass by fourth phase
- Removes 20% of waste heat
- No power required, but limited by available area

• Regenerative

 10 fold improvement in heat rejected per mass by fourth phase

 Removes 20% of waste heat
 ^{28 May 2002} Work Decomposition waste heat

Thermal Model Notes

• Features of each phases thermal control method are shown along with the thermal subsystems results summary in a table and chart to follow

Thermal Assumptions

Thormal Cont	rol Ontions	mass	volume	area	power	staff
Thermal Control Options		kg/MW	m³/MW	m²/MW	MW/MW	pps/MW
Phase 1	Radiator	5000	10	500	0.01	0.04
Phase 2	Radiator	1000	6	300	0.01	0.08
Phase 3	Radiator	300	4	200	0.01	0.05
Phase 4	Radiator	50	2	100	0.01	0.03
Phase 1	Heat Pipes	2500	0.1	1000	0	0.001
Phase 2	Heat Pipes	1000	0.06	600	0	0.001
Phase 3	Heat Pipes	500	0.03	300	0	0.001
Phase 4	Heat Pipes	250	0.015	150	0	0.001
Phase 1	Regenerative	20000	30	3	-0.2	0.12
Phase 2	Regenerative	10000	15	3	-0.2	0.2
Phase 3	Regenerative	4000	9	3	-0.2	0.1
Phase 4	Regenerative	2000	6	3	-0.2	0.05

Phase 1 values from SMAAD later phases follow from reasonable technology roadmap

28 May 2002 Work Decomposition

Structures: Overview

- Accommodates mass, area, and volume needs of other subsystems
- Mass, area, volume per subsystem
- Allows trades between primary materials for performance evaluation
- Optimizes size of Shanty Town for minimum combined time of Phases 0-1

Power.

staff needs

Structures: Example

MASS					
In Outer	Torus				
Atmosphere	1162 tonnes				
Attitude & Orbit	7 tonnes				
Habitat	12487104 tonnes				
Personnel	481 tonnes				
Recycling	114 tonnes				
Thermal (internal)	3336 tonnes				
Transportation	100 tonnes				
In Inner	Torus				
Food Production	49619.87 tonnes				
Out of F	Plane				
Manufacturing	57492 tonnes				
Milling & Primary	1848 tonnes				
Power (not solar panels)	603.3 tonnes				
Radiator	87.5 tonnes				
Refining	33049 tonnes				
Solar Panels	2154.5 tonnes				
Thermal (external)	1086.3 tonnes				

AREA					
In Outer Torus					
Atmosphere	0 m2				
Attitude & Orbit	106 m2				
Habitat	1815168 m2				
Personnel	0 m2				
Recycling	823 m2				
Thermal (internal)	728808 m2				
Transportation	10000 m2				
In Inner	Forus				
Food Production 132563.4 m2					
Out of P	lane				
Manufacturing	3481 m2				
Milling & Primary	243 m2				
Power (not solar panels)	503 m2				
Radiator	0 m2				
Refining	32631 m2				
Solar Panels	3194074 m2				
Thermal (external)	243021 m2				

• An example of the mass accounting budget

Structures

Structural Parameters					
Necessary major radius of torus	894.259 m				
Necessary area	404567.177 m2				
Necessary minor radius from area	36.001 m				
Necessary volume	4048492.983 m3				
Necessary minor radius from volume	15.144 m				
Using minor radius	36.001 m				
Ultimate factor of safety	2				
Material	AI 6061-T62				
Skin thickness	0.019 m				
Mass of structural material	84848.958 ton	nes			
Mass of aluminum	80252.954 ton	nes			
Mass of steel fasteners	4596.004 ton	nes			
Mass of glass	84848.958 ton	nes			

- Calculations for structure size, amount of material needed
- Uses a database of material properties
- Plausible comparison with 1975 Stanford study

 Determine attitude and orbit from design requirement for sun-pointing Design requirements platform Spin stabilization scheme Maintain attitude and orbit **Structures** Propellant type may change as raw Space materials from Moon become Propellant type environment and needs available Compute eclipse time Maximum eclipse time

- Orbital perturbations
 - Solar radiation pressure
 - 0.93 N
 - L1 orbital instability
 - 0.076 N

(Heliopolis, Phase 4) $F_a \approx \frac{1}{2}\rho C_d A_t V^2$, $\rho = \text{density}$, $C_d = 2.2$ A_{i} = area tangent to orbit, V = orbital velocity $F_{sp} \approx \frac{S}{c} A_n (1+q) \cos(i), \quad q \approx 0.6, \quad \cos(i) \approx 1,$ $S = 1358 \text{ W/m}^2$, solar flux at 1 AU from the Sun, A_n = area normal to orbit plane, $c = 3 \times 10^8$ m/s

- Propellant to counter forces and maintain orbital stability
 - 0.0533 tonnes/month (Xe)
 - Assumes Isp = 5000 for Solar Powered Xenon Ion **Propulsion** (Phase 4)

Power needed: 0.0288 MW 28 May 2002

$$\frac{dm_p}{dt} \approx \frac{\rho r C_d A_t}{2I_{sp}} \quad \text{for aerodynamic drag}$$
$$\frac{dm_p}{dt} \approx \frac{F_{sp}}{gI_{sp}} \quad \text{for solar radiation pressure}$$

- Euler angles
 - (pitch, yaw, roll) = (θ, ϕ, ψ)
- Rotation rates
 - $\omega_z = 1 \text{ rpm}$
 - $\omega_{\mathbf{x}} = \omega_{\mathbf{y}} = 0$

Moments of inertia for an *n* concentric torus structure

 $I_2 = \left(\frac{3}{2}st + r^2\right)M$

$$I_1 = I_3 = (\frac{5}{4}st + \frac{1}{2}r^2)M$$

where:

r = major radius, s = minor radius

t =skin thickness, M =mass of torus.

Notice: $I_2 \approx 2I_1$ when $st \ll r^2$

For *n* concentric tori with moments I_1^a , I_2^a , and I_3^a , where a=1,...,n, we simply sum :

$$I_i = \sum_{a=1}^n I_i^a$$
, for $i = 1, 2, 3$

28 May 2002

- Torque estimates
 - Gravity gradient

- Aerodynamic
- Solar radiation pressure
- Magnetic field

 $T_g \approx \frac{3\mu}{R^3} |I_3 - I_2| \psi, \quad \psi = \text{deviation from vertical},$ $\mu = GM_{\rm F}, R = radius of orbit$ $T_a \approx F_a \delta c_g, \ \frac{\delta c_g}{L} = 1\%, \ L \approx 895 \mathrm{m}$ $T_{sn} \approx F_{sn} \delta c_{\sigma}$ $T_m \approx DB$, D = residual dipole moment of vehicle, $B = \frac{2M}{P^3}$, $M = 7.96 \times 10^{15}$ tesla m³

• Torque estimates for Heliopolis, Phase 4

Gravity gradient	0.005 Nm per deg of ψ
Aerodynamic	~0
Solar radiation	8.34 Nm per 1% of δc_g
Magnetic field	~0

- Attitude stabilization
 - **Spin stabilization** (for torques affecting z axis)
 - For 1° accuracy Hss = T*P/4, P = orbit period
 - Hss = 2.99e8 kg m²/s (for T = Tsp , SRP)¹
 - $H = 1.71e10 \text{ kg m}^2/\text{s} >> \text{Hss}$
 - Thruster stabilization (for torques affecting x,y axes)
 - Disturbance torque: T = Tsp, SRP
 - Thrust needed: Th = T/L, L = length of arm (torus) major axis)
 - dm/dt = Th / (g * Isp) = 4.93e-4 tonnes/month of xenon

28 May 2002

Eclipses

• Very rare in Lunar L1 halo orbit

Conclusions

- Solar radiation pressure is dominant perturbation
- Solar powered xenon ion propulsion is adequate
- For attitude maintenance, spin stabilization with a few thrusters is adequate

Transportation

Transporting people and materials between Earth, L1 colony, & GE Propellant needed

Propellant requirements from astrodynamics calculations and rocket equations

Shuttle and Tug frequency

More advanced launch vehicles and space tugs for each phase, using Finished goods advanced technology, extraterrestrial resources as they

become available

Personnel

needs

Raw materials

from Earth

for exports

Transportation: Delta V to L1 From Low Earth Orbit

Impulsive propulsion

LEO/L1: Inputs

- Earth to L1 Colony
 - Material transport / trip frequency

LEO/L1: Assumptions/Outputs

- Launch Services: Earth to LEO
 - LEO payload = 250 tonnes (NOVA-class)
 - biprop, LO2/LH2
- LEO ⇔ L1 Colony "Shuttle"
 - Nuclear thermal, **250 tonnes** of payload to L1
 - Propellant: H2
 - Phases 0-2 : Purchased from Earth unless lunar source discovered
 - Phases 3+ : Available from retrieved asteroid

	Phases	0	1	2	3	4		Assumption Source
(lsp	1000	1000	1000	1125	1250	sec	Sercel: Technological progress
Assumptions {	Factor	10%	7%	5%	4%	3%	%	Sercel: Technological progress
	Tankage Factor	25%	25%	20%	16%	12%	%	Sercel: Technological progress
	# of passengers	20	30	40	50	60	#	Ross: 10 more each phase
	One-way TOF	3	3	2.5	1.5	1	days	Ross: Faster transit with time
Outputs {	Delta-V	3900	3900	4100	5300	6500	m/s	
	Mprop	98.4	95.7	96.3	106	112	tonnes	
	Mstructure	49.6	41.4	31.8	26.9	20.9	tonnes	
	Mtotal	398	387	378	383	382	tonnes	

L1/GEO: Inputs

L1 Colony ⇔ GEO "Tug"

L1/GEO: Assumptions/Outputs

L1 Colony ⇔ GEO "Tug"

- **Required for Phases 2 4**
- 45,000 tonne SPS delivered to GEO in 14 days
- Solar Electric Propulsion
- **Propellant: Xenon, purchased from Earth-based supplier**

	Phases	2	3	4		Assumption Source
Assumptions	Туре	Xenon	Xenon	Xenon		Sercel/Ross: Existing technology
	lsp	3500	4000	5000	sec	Ross:Technological progress
	Round-trip TOF	14.0	14.0	14.0	days	Ross: two weeks
	Thrust per unit power	41.9	47.9	59.9	N/MW	Ross: Scaled with Isp
	Thrust per unit mass	460.0	920.0	1840.0	N/tonne	Ross: Twice each phase
	Structure Factor	0.10%	0.10%	0.10%	%	Ross
	Tankage Factor	10%	8%	5%	%	Ross:Technological progress
	Power Factor	2.50	1.00	0.50	tonnes/MW	Parker
	Delta-V	3241	3241	3241	m/s	
Outputs <	Thrust	120.7	120.7	120.7	N	
	Power	2.88	2.52	2.01	MW	
	Мргор	4.25	3.72	2.98	tonnes	
	Mthrusters	0.262	0.131	0.066	tonnes	
	Msolararray	7.20	2.52	1.01	tonnes	
	Mstructure	52.2	47.7	46.2	tonnes	
28 May 2002	Mtotal	45064	45054	45052	tonnes	154

Continuous Thrust Calculation

Propellant for tug \bigcirc

- Edelbaum's equation: $\Delta V_{2} = V_{0}^{2} + V_{1}^{2} - 2 V_{0} V_{1} \cos(\pi i / 2)$
- where V_0 , V_1 = circular orbital velocities, i = change in inclination in degrees
- $\Delta V = 3.24$ km/s from L1 to GEO
- SPS: $m_{pl} = 45,000$ tonnes
- Roundtrip time: t = 14 days,
- Thrust: $T = \Delta V^* m / t = 121 N$
- Total thruster mass = 60.7 tonnes
- Propellant estimate: $m_p = T/(g I_{sp})$
- Tug: roundtrip to GEO
 - m_p = 4,660 tonnes/trip
 - For $I_{sp} = 3200$ s in Phase 1

mage from Boeing website: www.hughespace.com/factsheets/xips/xips.html

Near-Earth Asteroid Retrieval

Asteroid Retrieval Vehicle

- Lunar derived monopropellant for propulsion out to asteroid
 - Al₂O₃ made from lunar regolith
 - $I_{sp} = 315 \text{ sec}$
 - Rocket equation:

 $m_p = m_0 (1 - exp[-\Delta V/(g I_{sp})])$

- where $m_0 = m_{st} + m_{pl}$
- Closest asteroids (in energy)
 - $\Delta V = 3900 \text{ m/s}$
 - Asteroid retrieval vehicle sent out in Phase 2
- Mass driver propulsion assumed for return journey
 - Returns in Phase 3
 - Mass Payback Ratio assumed to be 1000¹
 - Asteriod of mass ~ 10⁷ tonnes, diameter ~ 300 m

Transportation: Conclusions

- Earth/LEO
 - NOVA-class, 250-tonnes-to-LEO heavy lift launch vehicle is assumed
- LEO/L1
 - 1-3 day trip times are feasible with nuclear propulsion and H₂ propellant

• L1/GEO

- Solar electric propulsion
- Consider argon or oxygen
 - Readily available from lunar regolith

Asteroid Retrieval

- Al₂O₃ monopropellant to rendezvous
- Mass driver assumed for return

• Other propulsion systems to consider

- Beamed energy from colony to tug
- Solar sails

Space environment near chosen
 orbit dictates radiation shielding
 necessary

Personnel

Orbit

Data taken from spacecraft data models of Earth's magnetic field

Slag from Refining Radiation dose required to be lo Storm shelters

Mass shielding

necessary

- Requirement: Personnel dosage below 0.25 rem/year
- L1 orbit requires radiation shielding
 - Solar cosmic particle radiation flux is uni-directional due to Earth's magnetic field, and is the most harmful¹
 - Omni-directional shielding for galactic cosmic rays
 - Allow for wind solar wind

28 May 2002

¹Thomas F. Tascione Introduction to the Space Environment (2nd ed) [1994], p. 141.

- Little extra external shielding needed
 - 4.3 cm of aluminum shielding necessary¹
 - 3.8 cm layer of aluminum provided by structure
 - Use **slag** from refining, in non-rotating outer toroidal shells
 - 12 cm of slag shielding necessary²
 - **31,500 tonnes** of slag for Heliopolis

• Solar flare storm shelters

- Need thick walls to handle large isotropic radiation flux
 - Conservative slag thickness = 3.0 m
- Storm shelters for 600 people each, and assume 10 m³/person
 - Mass per storm shelter = 7,730 tonnes
- For 2,900 people, need **5 shelters**
- Total storm shelter mass = **38,600 tonnes**

28 May 2002

¹Based on an aluminum thickness of 12 g/cm² and data from Tascione [1994]

² Slag assumed to have density of 1.3 g/cm³ and same shielding ability as lunar regolith

Conclusions

• External Shielding

- Aluminum structure and slag from refining is adequate
 - Aluminum structure provides 90% of the necessary shielding
 - For a slight increase in structure thickness, slag is unnecessary
 - May simplify construction

Solar Flare Storm Shelters

- Slag is adequate
- Five shelters necessary at 38,600 tonnes each

28 May 2002

¹Based on an aluminum thickness of 12 g/cm² and data from Tascione [1994] ²Slag assumed to have a density of 1.3 g/cm³ and same shielding ability as lunar regolith

Technical Study: Overview

- Design Problems/Requirements & Solutions
- Shanty Town Description
- Heliopolis Description
- System–Level Summary
- Discussion of Economic Model
- Explanation of Subsystem Models

Summary

Conclusions (1 of 3)

- O'Neill was right: world market exists to begin supply of solar energy
 - World demand of 612 QBTUs¹ far exceeds world production capability of 496 QBTUs²
 - SPS production can begin to supply unmet demand
- Solar energy from SPS cleaner, safer than alternatives
 - No risk of toxic wastes/spills
 - No risk of explosions or meltdowns
 - No people displaced, no land made unusable

Conclusions (2 of 3)

- LSMD study comparable to 1975 Stanford study
 - Differences reflect 25 years of technological advances
- However: LSMD study represents fundamentally new analysis
 - Integrated cost model demonstrates project's economic feasibility
- Technology exists or can be designed to begin project in the next 20 years

Conclusions (3 of 3)

- Economic profit returned in 20 years
 - Positive cash flow in 15 years
 - Initial investment of \$106 billion
 - Self-sufficiency and internalizing costs critical to project success
- Power requirements dominated by industrial refinery needs
- Project cost driven by food production
 - Low mass, but biomass only available from Earth
 - Personnel costs surprisingly insignificant