HELLPOLIS The Next Giant Leap

Chad Kessens, Ryan McDaniel, Melahn Parker, Shane Ross, Luke Voss

Heliopolis Mission

To build a profitable, self-sustaining foothold for humanity in space

Heliopolis: Space Business Park / Community

- Support several industries
 - Solar power satellites (SPS)*
 - Communications satellites
 - Zero-gravity manufacturing
 - Tourism
 - Asteroid mining
 - Capacity for growth (self-replication)
- Lunar L1 halo orbit
 - Continuous sunlight
 - Moon-viewing for tourists
- Necessary for future space infrastructure

*Only revenue from SPS modeled

Heliopolis Development Timeline

Lunar Mass Driver operational

Phase 0 (2020-2021)

Shanty Town Construction

- ISS-like modules to L1
- Mass driver to Moon
- 3-month crew rotations
- Cost: 35 B\$ (Y2K)
- People: 0-100

Earth People and Resources

Shanty Town (Earth-Moon L1) Moon Resources

Sun Energy

Phase 1 (2021-2022)

Begin Construction of Heliopolis

• Build first permanent habitation modules

Heliopolis

- Construction materials from Moon
- 3-month crew rotations
- Cost: 27 B\$

Earth

- People: 100-115
- 0-5% complete

Moon

Sun

Phase 2 (2022-2032) Intermediate Construction Stage Permanent habitation Manufacture of SPSs/Commsa Launch asteroid retriever • Cost: 151 B\$ • Revenue: 343 B\$ • People: 115-341 Heliopolis Earth 5-62% complete

GEO Products Moon

Sun

Asteroid

Infrastructure Requirements

- Module fabrication facility
- Heavy-lift launch vehicle (HLLV) services
- Lunar mass driver
- Inter-orbital shuttle
- Ground receiver arrays (rectennas)

Technology Requirements

- Enabling Technology
 - 250-tonne-to-LEO class HLLV
 - Improved automation
 - Nuclear reactor in space
 - Closed-loop recycling

- Enhancing Technology
 - SEP using O2
 - Nuclear thermal propulsion
 - Improved PowerSail efficiency
 - Mass driver propulsion
 - Self-Replicating Machines

Cash Flow Analysis (log scale)

Alaska Pipeline Comparison

	Alaska Pipeline	Heliopolis
Cost before revenue	22.7 B\$	105 B\$
Time to revenue	2.21 years	15 years
Avg. cost per year before revenue	10.3 B\$	7 B\$
Avg. profit per year	3 B\$	214 B\$ ¹
Energy supplied per year ²	94.5 MBTUs delivered	233 MBTUs produced

¹Beginning of Phase 4 ²World demand of 612 QBTUs in 2020

Three Gorges Dam Comparison

	Three Gorges	Heliopolis
Cost before revenue	Dam 26.6 B\$	105 B\$
Time to revenue	20 years	15 years
Avg. cost per year before revenue	1.33 B\$	7 B\$
Avg. profit per year	62.8 B\$ ³	214 B\$ ¹
Energy supplied per year ²	0.54 MBTUs delivered	233 MBTUs produced

¹Beginning of Phase 4 ²World demand of 612 QBTUs in 2020 ³Revenue; profit figures unavailable

Environmental Impact

Alaska Pipeline	Three Gorges Dam	Nuclear Power	Heliopolis
12 M gallons of oil spilled over last 25 years	Toxic levels of arsenic, mercury, lead, cyanide in water supply; 1.9 million people displaced	Chernobyl affected 7 million, contaminated 155,000 sq.km ¹	Construction of rectennas (but still allows use of land); microwaves not harmful ²

¹Belarussian Embassy website ²1975 Stanford study

Conclusions (1 of 3)

- O'Neill was right: world market exists to begin supply of solar energy
 - World demand of 612 QBTUs¹ far exceeds world production capability of 496 QBTUs²
 - SPS production can begin to supply unmet demand
- Solar energy from SPS cleaner, safer than alternatives
 - No risk of toxic wastes/spills
 - No risk of explosions or meltdowns
 - No people displaced, no land made unusable

¹US DoE ²International Energy Agency

Conclusions (2 of 3)

- LSMD study comparable to 1975 Stanford study
 - Differences reflect 25 years of technological advances
- However: LSMD study represents fundamentally new analysis
 - Integrated cost model demonstrates project's economic feasibility
- Technology exists or can be designed to begin project in the next 20 years

Conclusions (3 of 3)

- Economic profit returned in 20 years
 - Positive cash flow in 15 years
 - Initial investment of \$105 billion
 - Self-sufficiency and internalizing costs critical to project success
- Power requirements dominated by industrial refinery needs
- Project cost driven by food production
 - Low mass, but biomass only available from Earth
 - Personnel costs surprisingly insignificant