Astrophysical transport calculations inspired by chemistry
 -Or-

Computing with tube dynamics

Shane Ross

Aerospace \& Mechanical Engineering, USC
Control \& Dynamical Systems, Caltech

http://www.shaneross.com

$$
\text { April 22, } 2005
$$

Motivation

N-body and fluid systems - phase space transport

Partition phase space into realms

"reactants"
 "products"

Realms connected by tubes

adapted from Topper [1997]

"Interplanetary Superhighway"

sciencenews.org's version of the tubes

Important ideas

Consider $N \ll$ trillion
\square Planet and planetary system scale

Important ideas

\square Consider $N \ll$ trillion

\square Planet and planetary system scale
\square Chaotic transport of small bodies via Hamiltonian flow - flow due to point masses or distended bodies - low dimensional phase space ($\sim 6 \mathrm{D}$)

Phase space structures mediating transport

- tube and lobe dynamics

Important ideas

\square Consider $N \ll$ trillion

\square Planet and planetary system scale
\square Chaotic transport of small bodies via Hamiltonian flow - flow due to point masses or distended bodies

- low dimensional phase space ($\sim 6 \mathrm{D}$)
\square Phase space structures mediating transport
- tube and lobe dynamics
\square Approximate statistical models may be appropriate under certain conditions
- statistical assumptions in chemistry
- amounts to phase space volume determinations

Outline of talk

\square Some questions about solar system populations
\square Crash course in tube dynamics
\square Some answers

- squeezing phase space for all its worth

Some questions

\square Transport \& evolution of some solar system populations

Some questions

\square Transport \& evolution of some solar system populations

- How do we characterize the motion of
- Jupiter-family comets
- scattered Kuiper Belt objects
- Mars and Earth-encountering asteroids

Some questions

\square Transport \& evolution of some solar system populations

- How do we characterize the motion of
- Jupiter-family comets
- scattered Kuiper Belt objects
- Mars and Earth-encountering asteroids
- During encounter:
- Statistics of temporary capture time
- Transition probablity between the exterior and interior regions?
- Probability of comet collision with Jupiter?
- Or a near-Earth asteroid collision with Earth?

Some questions

\square Transport \& evolution of some solar system populations

- How do we characterize the motion of
- Jupiter-family comets
- scattered Kuiper Belt objects
- Mars and Earth-encountering asteroids
- During encounter:
- Statistics of temporary capture time
- Transition probablity between the exterior and interior regions?
- Probability of comet collision with Jupiter?
- Or a near-Earth asteroid collision with Earth?
- Binary asteroids
- Ejecta escape and re-capture
- Other situations: planetary ejecta transfer, drag perturbed case

Scattered Kuiper Belt Objects

- Seen in inertial space

Scattered Kuiper Belt Objects

Scattered Kuiper Belt Objects (and Centaurs) with Neptune Tisserand Parameters 2.7-3.2

- Current SKBO locations in black, with some Tisserand values w.r.t. Neptune in red ($T \approx 3$)

Motion within energy shell

\square Recall the circular restricted three-body problem from Jerry Marsden's talk
\square Energy shell of energy E is codim- 1 surface

$$
\mathcal{M}(E)=\{(\mathrm{q}, \mathrm{p}) \mid H(\mathrm{q}, \mathrm{p})=E\} .
$$

\square The $\mathcal{M}(E)$ are 5 -dimensional surfaces foliating the 6-dimensional phase space.

Probability density function

\square Recent work suggests there may be regions of the energy shell for which the motion is nearly ergodic, e.g., large connected chaotic sea ${ }^{1}$
\square Compute probability density function of some function $F(\mathrm{q}, \mathrm{p})$, directly from phase space

- e.g., semimajor axis probability density function

[^0]
Probability density function

\square SKBOs expected in regions of high density.

Probability density function

- Similar analysis can be done for
- Jupiter family comets (above)
- Earth- and Mars-encountering asteroids
- Summing over energy layers gives full picture

Movement around stable resonances via lobes

see Ross, Koon, Lo, Marsden [2003], Meiss [1992] and Schroer and Ott [1997]

Movement around stable resonances via lobes

\square Scattering via successive close approaches

- by moving around resonances

Scattering

Movement around stable resonances via lobes

Scattered Kuiper Belt Objects (and Centaurs) with Neptune Tisserand Parameters 2.7-3.2

- Scattering looks like lateral movement along Tisserand contour

Realms and tubes

\square Planetary and sun realms connected by tubes ${ }^{2}$

[^1]
Restricted 3-body prob.

Planar circular case
\square Partition the energy surface: S, J, X regions

Equilibrium region

\square Look at motion near the potential barrier, i.e. the equilibrium region

Position Space Projection

Local Dynamics

\square For fixed energy, the equilibrium region $\simeq S^{2} \times \mathbb{R}$.

- Stable/unstable manifolds of periodic orbit define mappings between bounding spheres on either side of the barrier

Cross-section of Equilibrium Region

Equilibrium Region

Equilibrium region and tubes

\square Eigenvalues of linearized equations: $\pm \lambda, \pm i \nu$
\square Equilibrium region has a saddle \times center geometry
\square For each energy, there is one periodic orbit
\square Its stable \& unstable manifolds are cylindrical $\simeq S^{1} \times \mathbb{R}$
\square Locally obtained analytically via normal form expansion
\square Can be globalized, numerically extended under the flow
\square We call them tubes

Tubes in the 3-body problem

\square Stable and unstable manifold tubes

- Control transport through the potential barrier.

Tube dynamics

\square All motion between realms connected by equilibrium neck regions \mathcal{R} must occur through the interior of the cylindrical stable and unstable manifold tubes

Some remarks

\square Tubes are generic consequence of rank 1 saddle - saddle \times center $\times \cdots \times$ center
\square Tubes exist in 3 dof rest. 3-body problem ($\simeq S^{3} \times \mathbb{R}$)
\square Tubes persist

- when primary bodies' orbit is eccentric
- in presence of 4th massive body
\square Observed in the solar system!

Koon, W. S., M. W. Lo, J. E. Marsden, and S. D. Ross [2000], Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics, Chaos, 10, 427-469, Gómez, G., W. S. Koon, M. W. Lo, J. E. Marsden, J. Masdemont, and S. D. Ross [2004], Connecting orbits and invariant manifolds in the spatial three-body problem, Nonlinearity, 17, 1571-1606, and Yamato, H. and D. B. Spencer [2003], Numerical investigation of perturbation effects on orbital classifications in the restricted three-body problem. In AAS/AIAA Space Flight Mechanics Meeting, Ponce, Puerto Rico. Paper No. AAS 03-235.

Escape and capture rates

\square Consider Mars ejecta with enough energy to escape sunward. Using a statistical approach used in transition state theory (developed by chemists), the rate of escape can be estimated. ${ }^{3}$

[^2]
Escape and capture rates

\square Mixing assumption: all asteroids in the chaotic sea surrounding Mars are equally likely to escape.
Escape rate constant $=k_{\text {esc }}=-\log \left(1-p_{\text {esc }}\right)$, where

$$
p_{e s c}=\frac{\text { Volume of exit sunward (red) }}{\text { Volume of chaotic sea (black) }}
$$

Escape and capture rates

\square Theory and numerical simulations agree well

- Monte Carlo simulation (dashed) and theory (solid)

Escape and capture rates

\square Similarly, can estimate the probability of a rogue asteroid encountering Mars.

Escape and capture rates

\square Same mixing assumption, i.e., ignoring lobe dynamics and resonances.
Capture rate constant $=k_{\text {cap }}=-\log \left(1-p_{\text {cap }}\right)$, where

$$
p_{c a p}=\frac{\text { Volume of exit Marsward (same) }}{\text { Volume of interior chaotic sea (larger) }}
$$

Escape and capture rates

- Bounded chaotic sea
- Sunward edge can reach Earth - consider restricted 4-body system

Escape and capture rates

- "Half-life" until capture $\sim 10^{5}$ years
- Overestimate due to ignoring partial barrier behavior of resonances
- Capture is temporary or leads to collision

Temporary capture times

$\square \mathrm{A}$ kind of scattering problem

Temporary capture times

\square Related to scattering of an electron by a Rydberg ion in crossed magnetic and electric fields, a recently solved problem ${ }^{4}$
\square Earlier assumption, transition state theory, not adequate
\square Scattering profile is structured, not exponential
\square Scattering completely determined by tube dynamics

[^3]
Temporary capture times

Scattering determined by tube dynamics

\square Intersection of incoming and outgoing tubes as they wind around is the mechanism of scattering.

Scattering determined by tube dynamics

\square Let first intersection of incoming tube be the entrance, similarly define the exit
\square Intersections of images of entrance with exit determine scattering profile

Scattering determined by tube dynamics

Fractal tiling of the exit

Scattering determined by tube dynamics

$\square 4 \mathrm{D}$ intersection volumes computed using Monte Carlo method.

(a)

(b)

Scattering determined by tube dynamics

\square Scattering/capture time profiles are structured

Transition and collision

\square Full picture even more complicated! ${ }^{5}$

\square Transition to other realms and collision possible.

[^4]
Transition probabilities

Transition probabilities

\square Example: Comet transport between outside and inside of Jupiter (i.e., Oterma-like transitions)

(a)

Transition probabilities

\square Consider Poincaré section intersected by both tubes.

Transition probabilities

\square Canonical area ratio gives the conditional probability to pass from outside to inside Jupiter's orbit.

- Assuming a well-mixed connected region on the energy mfd.

y
Canonical Plane $\left(y, p_{y}\right)$

Transition probabilities

\square Jupiter family comet transitions: $\mathbf{X} \rightarrow \mathbf{S}, \mathbf{S} \rightarrow \mathbf{X}$
Transition Probability for Jupiter Family Comets

Collision probabilities

\square Low velocity impact probabilities
\square Assume object enters the planetary region with an energy slightly above L1 or L2

- eg, Shoemaker-Levy 9 and Earth-impacting asteroids

Example Collision Trajectory

Collision probabilities

- Compute from tube intersection with planet on Poincaré section
- Planetary diameter d is a parameter
- Tube "breaks apart" after each collision, becomes difficult to follow

\leftarrow Diameter of planet \rightarrow

Collision probabilities

Poincare Section: Tube Intersecting a Planet

Probability for comet collision with Jupiter

Collision Probability for Jupiter Family Comets

Probability for NEA collision with Earth

Collision Probability for Near-Earth Asteroids

Typical collision orbit

Simple kinetic mechanism for Earth collision

- Inspired by chemical reaction kinetic mechanisms (Markov process)

Simple kinetic mechanism for Earth collision

- Typical NEA strikes Earth within $\tau_{\text {col }} \sim 10^{4}-10^{5}$ years
- energy of 2004 MN4, potentially hazardous asteroid

Collisions in other systems

timescale of collision

$$
\tau_{c o l} \propto t_{o r b}\left(\frac{m_{2}}{m_{1}}\right)^{k_{m}} E^{k_{E}} d^{k_{d}}
$$

Binary asteroids

\square Apply transport calculations to asteroid pairs to calculate, e.g., capture \& escape rates.

- example of full body problem (rotational-translational coupling)

Dactyl in orbit about Ida, discovered in 1994 during the Galileo mission.

Binary asteroids

\square Slices of energy surface: Poincaré sections U_{i}
\square Tube dynamics: evolution between U_{i}
\square Lobe dynamics: evolution on U_{i}

Lobes of ejection

\square Smaller body ejected if within lobes bounded by manifolds of a hyperbolic fixed point at ∞

- similar to van der Waals complex formation

Position space projection

Lobe turnstile mechanism

Lobes of ejection

Numerical simulation using MANGEN

Lobes of ejection

Curves can be followed to very high accuracy

MANGEN description

- Simulations use MANGEN ${ }^{6}$
- Adaptive conditioning of surfaces based on curvature
- for chaotic low dimensional systems of arbitrary time dependence

Tube + lobe dynamics

\square Suppose energy above collision threshold
\square Exterior and asteroid realms connected via tubes
\square In exterior realm, some tubes lead to collision (others lead away from collision - liberation)
\square Tube + lobe dynamics $=$
Alternate fates of collision and ejection are intimately intermingled.

Tube + lobe dynamics

\square Tubes leading to collision with asteroid

Position space projection

Motion on M

Tube + lobe dynamics

\square Tubes leading to collision with asteroid plus tubes coming from collision, e.g., liberated ejecta

Position space projection

Motion on M

Tube + lobe dynamics

Escape and re-capture.

Tube + lobe dynamics

\square Alternate fates of ejection and collision intermingled ${ }^{7}$

[^5]
Collisions between rigid bodies

Inertial frame projection

Energy history
\square If bouncing is modeled, dynamics more complicated - bouncing particle moves between energy surfaces

Other situations to explore

\square Ejecta transfer between planets
Dissipative perturbations
Additional physics, astrophysical situations of interest

- effect of mass transfer on phase space
- ideas ???

Ejecta transfer

\square Linking multiple 3-body systems

Ejecta transfer

\square Earth to moon

Dissipative perturbations

\square Dust grains temporarily captured in resonances creating ring structure

- the circumstellar disk.

Source: Roques, Scholl, Sicardy, and Smith [1994]

Summary and outlook

\square Relationship between phase space geometry and statistics for low dimensional systems

- connected chaotic sets
- transport via tubes and lobes
- ejection and collision
\square Statistical ideas from chemistry may be useful
- coarse variables
- for large N , low-dim manifold may dominate dynamics

Summary and outlook

\square Relationship between phase space geometry and statistics for low dimensional systems

- connected chaotic sets
- transport via tubes and lobes
- ejection and collision
\square Statistical ideas from chemistry may be useful
- coarse variables
- for large N , low-dim manifold may dominate dynamics

For papers, movies, etc., visit the website: http://www.shaneross.com

[^0]: ${ }^{1}$ Jaffe, C., S. D. Ross, M. W. Lo, J. Marsden, D. Farrelly, and T. Uzer [2002] Statistical theory of asteroid escape rates, Physical Review Letters 89, 011101, and G. Tancredi [1995] The dynamical memory of Jupiter Family comets, Astron. Astroph. 299, 288-292

[^1]: ${ }^{2}$ Ross, S. D. [2004] Cylindrical manifolds and tube dynamics in the restricted three-body problem, Ph.D. thesis

[^2]: ${ }^{3}$ Jaffé, Ross, Lo, Marsden, Farrelly, and Uzer [2002]

[^3]: ${ }^{4}$ F. Gabern, W.S. Koon, J.E. Marsden and S.D. Ross [2005] Theory and computation of non-RRKM lifetime distributions and rates in chemical systems with three or more degrees of freedom, submitted for publication.

[^4]: ${ }^{5}$ Ross [2003] Statistical theory of interior-exterior transition and collision probabilities for minor bodies in the solar system, Libration Point Orbits and Applications, World Scientific, pp. 637-652.

[^5]: ${ }^{7}$ Koon, Marsden, Ross, Lo, and Scheeres [2004] Geometric mechanics and the dynamics of asteroid pairs, Annals of the New York Academy of Science 1017, 11-38.

