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Outline of talk

� Insight into some dynamical astronomy
phenomena can be gained by a restricted
three-body analysis

� e.g., Jupiter-family comets and scattered Kuiper Belt
objects (under Neptune’s control); near-Earth objects

� By applying dynamical systems methods to the pla-
nar, circular restricted three-body problem, several ques-
tions regarding these populations may be addressed

� Outline some theoretical ideas

� Several computational results will be shown

� Comparison with observational data is made

� Future directions: other N -particle systems
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Transport Theory

¥Chaotic dynamics
=⇒ statistical methods

¥Transport theory
¤ Ensembles of phase space trajectories
• How long (or likely) to move from one region to another?

• Determine transition probabilities, correlation functions

¤Applications:
• Atomic ionization rates

• Chemical reaction rates

• Comet and asteroid escape rates,
resonance transition probabilities,
collision probabilities
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Transport Theory

¥Transport in the solar system

¤ For objects of interest
• e.g., Jupiter family comets, near-Earth asteroids, dust

¤ Identify phase space objects governing transport

¤View N -body as multiple restricted 3-body problems

¤ Look at stable and unstable manifold of periodic or-
bits associated with Lagrange points and mean motion
resonances

¤Use these to compute statistical quantities
• e.g., probability of resonance transition, escape rates
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Dynamical astronomy
� We want to answer several questions regarding the trans-

port and origin of some kinds of solar system material

◦ How do we characterize the motion of Jupiter-family comets (JFCs)
and scattered Kuiper Belt objects (SKBOs)?

◦ How probable is a Shoemaker-Levy 9-type collision with Jupiter?
Or an asteroid collision with Earth (e.g., KT impact 65 Ma)?

◦ How likely is a transition from outside a planet’s orbit to inside (e.g.,
the dance of comet Oterma with Jupiter)?

◦We can answer these questions by considering the phase space

� Harder questions

◦ How does impact ejecta get from Mars to Earth?

◦ How does an SKBO become a comet or an Oort Cloud comet?

◦ Find features common to all exo-solar planetary systems?
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Jupiter Family Comets
◦ JFCs and lines of constant Tisserand parameter,

T =
1

a
+ 2

√
a(1− e2),

an approximation of the Jacobi constant (i.e., C = T +O(µ))
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Jupiter Family Comets

�Physical example of intermittency

� We consider the historical record of the comet
Oterma from 1910 to 1980
• first in an inertial frame

• then in a rotating frame

• a special case of pattern evocation

� Similar pictures exist for many other comets
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Jupiter Family Comets
• Rapid transition: outside to inside Jupiter’s orbit.

◦ Captured temporarily by Jupiter during transition.

◦ Exterior (2:3 resonance) to interior (3:2 resonance).
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Viewed in Rotating Frame
� Oterma’s orbit in rotating frame with some invariant

manifolds of the 3-body problem superimposed.
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Viewed in Rotating Frame

Oterma - Rotating Frame
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Collisions with Jupiter
� Shoemaker Levy-9: similar energy to Oterma

• Temporary capture and collision; came through L1 or L2

Possible Shoemaker-Levy 9 orbit seen in rotating frame (Chodas, 2000)
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Scattered Kuiper Belt objects
◦ Current SKBO locations in black, with some Tisserand values w.r.t.

Neptune in red (T ≈ 3)

Scattered Kuiper Belt Objects
◦ Kuiper Belt objects in green, SKBOs near T = 3

◦ Neptune L2 stable and unstable manifolds in black (around T = 3)
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Scattered Kuiper Belt Objects
◦ Seen in inertial space
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Motion of JFCs and SKBOs
� Observation and numerical experiments show chaotic

motion maintaining nearly constant Tisserand parame-
ter in the short-term (i.e., a few Lyapunov times, ∼ 102

to 103 years, cf. Tancredi [1995])

� We approximate the short-timescale motion of JFCs and
SKBOs as occurring within an energy shell of the re-
stricted three-body problem

� Several objects may be in nearly the same energy shell,
i.e., all have T s.t. |T − T ∗| ≤ δT for some T ∗, δT

� We analyze the structure of an energy shell to determine
likely locations of JFCs and SKBOs
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Three-Body Problem

�Circular restricted 3-body problem

� the two primary bodies move in circles; the much
smaller third body moves in the gravitational field of
the primaries, without affecting them

� the two primaries could be the Sun and Earth, the
Earth and Moon, or Jupiter and Europa, etc.

� the smaller body could be a spacecraft or asteroid

� we consider the planar and spatial problems

� there are five equilibrium points in the rotating frame,
places of balance which generate interesting dynamics
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Three-Body Problem
� Equations of motion:

ẍ− 2ẏ = −U eff
x , ÿ + 2ẋ = −U eff

y

where

U eff = −(x2 + y2)

2
− 1− µ

r1
− µ

r2
.

� Have a first integral, the Hamiltonian energy, given by

E(x, y, ẋ, ẏ) =
1

2
(ẋ2 + ẏ2) + U eff(x, y).

� Energy manifolds are 3-dimensional surfaces foliating
the 4-dimensional phase space.

� This is for the planar problem, but the spatial problem
is similar.
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Regions of Possible Motion

�Effective potential

� In a rotating frame, the equations of motion describe
a particle moving in an effective potential plus a corio-
lis force (goes back to the work of Jacobi, Hill, etc.)
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Partition the Energy Surface

¥Restricted 3-body problem (planar)

¤ Partition the energy surface: S, J, X regions
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Tubes in the 3-Body Problem
� Stable and unstable manifold tubes

• Control transport through the neck.

x	(rotating	frame)

y	
(r

o
ta

ti
n

g
	f

ra
m

e)

L2 Periodic

Orbit
Stable

Manifold

Unstable

Manifold

Sun

Stable

Manifold

Forbidden Region

Unstable

Manifold

Jupiter

Forbidden Region

L2

24



Motion within energy shell
� For fixed µ, an energy shell (or energy manifold) of en-

ergy ε is

M(µ, ε) = {(x, y, ẋ, ẏ) | E(x, y, ẋ, ẏ) = ε}.
The M(µ, ε) are 3-dimensional surfaces foliating the
4-dimensional phase space.

9



Poincaré surface-of-section
� Study Poincaré surface of section at fixed energy ε:

Σ(µ,ε) = {(x, ẋ)|y = 0, ẏ = f (x, ẋ, µ, ε) < 0}
reducing the system to an area preserving map on the
plane. Motion takes place on the cylinder, S1 × R.

z

P(z)

Poincaré surface-of-section and map P
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Connected chaotic component
◦ The energy shell has regular components (KAM tori) and irregular com-

ponents. Large connected irregular component is the “chaotic sea.”

11



Movement among resonances
◦ The motion within the chaotic sea is understood as the movement of

trajectories among resonance regions (see Meiss [1992] and Schroer and
Ott [1997]).
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Movement among resonances

Schematic of two neighboring resonance regions from Meiss [1992]
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Movement among resonances
◦ Confirmed by numerical computation.

◦ Shaded region bounded by stable and unstable invariant manifolds of an
unstable resonant (periodic) orbit.
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Homoclinic tangle
◦ Unstable/stable manifolds of periodic points understood as the back-

bone of the dynamics. This is the homoclinic tangle glimpsed by Poincaré.
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Resonance region
◦ Unstable/stable manifolds up to “pip” (cf. Wigging [1992]) denote the

boundary of the resonance region.

16



Resonance region
◦ Neighboring resonance regions indeed overlap, leading to complicated

mixing.
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Transport quantities
• Lobe dynamics; following intersections of stable and unsta-

ble invariant manifolds of periodic orbits (Wiggins et al.)
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Transport quantities
� These methods are preferred over the “brute force”

solar system calculations seen in the literature since they
are based on first principles.

� Reveal generic structures; give deeper insight.
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Escape rates

�Obtain rates and probabilities
� One can compute the rate of escape of asteroids

temporarily captured by Mars.
• Jaffé, Ross, Lo, Marsden, Farrelly, and Uzer [2002]

� Statistical approach
• similar to chemical dynamics, see Truhlar [1996]

� Consider an asteroid (or other body) in orbit around
Mars (perhaps impact ejecta) at a 3-body energy such
that it can escape toward the Sun.

� Interested in rate of escape of such bodies at a fixed
energy, i.e. FM,S(t)
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¥ Hill’s Region (PCR3BP)

I To fix energy value E is to fix height of plot of U(x, y).
Contour plots give 5 cases of Hill’s region.
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Escape rates
� Mixing assumption: all asteroids in the Mars region at

fixed energy are equally likely to escape.

�

Escape rate =
flux out of Mars region

Mars region phase space volume

=
area of escaping orbits

area of chaotic region
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Escape rates
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Escape rates
� Compare with Monte Carlo simulations of 107,000 par-

ticles

• randomly selected initial conditions at constant energy
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Transition Rates
� Theory and numerical simulations agree well.
◦Monte Carlo simulation (dashed) and theory (solid)
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Steady state distribution
� If the planar, circular restricted three-body problem is

ergodic, then a statistical mechanics can be built (cf.
ZhiGang [1999]).

� Recent work suggests there may be regions of the energy
shell for which the motion is ergodic, in particular the
“chaotic sea” (Jaffé et al. [2002]).

� This suggests we compute the steady state distribu-
tion of some observable for particles in the chaotic sea;
a simple method for obtaining the likely locations of any
particles within it.
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Steady state distribution
� Assuming ergodicity,

lim
t→∞

1

t

∫ t

0

A(x, y, px, py)dτ =∫
A(x, y, px, py)

C
|∂H
∂py
|dpxdxdy,

where A(x, y, px, py) is any physical observable (e.g.,
semimajor axis), one can finds that the density function,
ρ(x, px), on the surface-of-section, Σ(µ,ε), is constant.

� We can determine the steady state distribution of semi-
major axes; define N(a)da as the number of particles
falling into a → a+da on the surface-of-section, Σ(µ,ε).
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Steady state distribution
� SKBOs should be in regions of high density.

Steady state distribution
� SKBOs should be in regions of high density.
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Collision Probabilities
� Low velocity impact probabilities

� Assume object enters the planetary region
with an energy slightly above L1 or L2

• eg, Shoemaker-Levy 9 and Earth-impacting asteroids
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Tubes in the 3-Body Problem
� Stable and unstable manifold tubes

• Control transport through the neck.
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Collision Probabilities

�Collision probabilities
◦ Compute from tube intersection with planet on Poincaré section

◦ Planetary diameter is a parameter, in addition to µ and energy E

← Diameter of planet →
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Collision Probabilities

�Collision probabilities
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Collision Probabilities
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Collision Probabilities
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Conclusion and Future Work

�Transport in the solar system

� Approximate some solar system phenomena using the
restricted 3-body problem

� Circular restricted 3-body problem
• Stable and unstable manifold tubes of libration point orbits

can be used to compute statistical quantities of interest

• Probabilities of transition, collision

� Theory and observation agree

�Future studies to involve multiple
three-body problems and 3-d.o.f.
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For papers, movies, etc., visit the website:
http://www.cds.caltech.edu/∼shane
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