

# Invariant Manifolds, the Spatial 3-Body Problem and Space Mission Design Shane D. Ross

Control and Dynamical Systems, Caltech

G. Gómez, W.S. Koon, M.W. Lo, J.E. Marsden, J. Masdemont October 17, 2001

### Introduction

#### Theme

□ Using dynamical systems theory applied to 3- and 4body problems for understanding solar system dynamics and identifying useful orbits for space missions.

### Introduction

#### Theme

□ Using dynamical systems theory applied to 3- and 4body problems for understanding solar system dynamics and identifying useful orbits for space missions.

#### Current research importance

Development of some NASA mission trajectories, such as the recently launched Genesis Discovery Mission, and the upcoming Europa Orbiter Mission

#### Introduction

#### Theme

□ Using dynamical systems theory applied to 3- and 4body problems for understanding solar system dynamics and identifying useful orbits for space missions.

#### Current research importance

- Development of some NASA mission trajectories, such as the recently launched Genesis Discovery Mission, and the upcoming Europa Orbiter Mission
- □ Of current astrophysical interest for understanding the transport of solar system material (eg, how ejecta from Mars gets to Earth, etc.)

### **Genesis Discovery Mission**

- Genesis will collect solar wind samples at the Sun-Earth L1 and return them to Earth.
- □ It was the first mission designed start to finish using dynamical systems theory.



#### **Europa Orbiter Mission**

#### **Oceans and life on Europa?**

Recently, there has been interest in sending a scientific spacecraft to orbit and study Europa.





#### **Europa Orbiter Mission**

Europa Mission

Goal: Find cheap way to Europa (consuming least amount of fuel)

□ Goal: Find cheap way to Europa (consuming least amount of fuel)

• Flyby other bodies of interest along the way

□ Goal: Find cheap way to Europa (consuming least amount of fuel)

• Flyby other bodies of interest along the way

Method: Take full advantage of the phase space structure to yield optimal trajectory

□ Goal: Find cheap way to Europa (consuming least amount of fuel)

• Flyby other bodies of interest along the way

Method: Take full advantage of the phase space structure to yield optimal trajectory

Model: Jupiter-Europa-Ganymede-spacecraft 4-body model considered as two 3-body models

□ Goal: Find cheap way to Europa (consuming least amount of fuel)

• Flyby other bodies of interest along the way

Method: Take full advantage of the phase space structure to yield optimal trajectory

Model: Jupiter-Europa-Ganymede-spacecraft 4-body model considered as two 3-body models

• Extend previous work from planar model to 3D

### History of 3-Body Problem

#### Brief history:

- Founding of dynamical systems theory: Poincaré [1890]
   Special orbits: Conley [1963,1968], McGehee [1969]
- Invariant manifolds: Simó, Llibre, and Martinez [1985], Gómez, Jorba, Masdemont, and Simo [1991]
- Applied to space missions: Howell, Barden, and Lo [1997], Lo and Ross [1997,1998] Koon, Lo, Marsden, and Ross [2000], Gómez, Koon, Lo, Marsden, Masdemont, and Ross [2001]
- Using optimal control: Serban, Koon, Lo, Marsden, Petzold, Ross, and Wilson [2001]

#### Circular restricted 3-body problem

the two primary bodies move in circles; the much smaller third body moves in the gravitational field of the primaries, without affecting them

#### Circular restricted 3-body problem

- the two primary bodies move in circles; the much smaller third body moves in the gravitational field of the primaries, without affecting them
- □ the two primaries could be the Sun and Earth, the Earth and Moon, or Jupiter and Europa, etc.
- the smaller body could be a spacecraft or asteroid

#### Circular restricted 3-body problem

- the two primary bodies move in circles; the much smaller third body moves in the gravitational field of the primaries, without affecting them
- □ the two primaries could be the Sun and Earth, the Earth and Moon, or Jupiter and Europa, etc.
- the smaller body could be a spacecraft or asteroid
- we consider the planar and spatial problems
- □ there are five equilibrium points in the rotating frame, places of balance which generate interesting dynamics

- 3 unstable points on line joining two main bodies  $L_1, L_2, L_3$
- 2 stable points at  $\pm 60^{\circ}$  along the circular orbit  $L_4, L_5$



Equilibrium points

- ] orbits exist around  $L_1$  and  $L_2$ ; both periodic and quasiperiodic
  - Lyapunov, halo and Lissajous orbits

one can draw the invariant manifolds assoicated to  $L_1$  (and  $L_2$ ) and the orbits surrounding them

these invariant manifolds play a key role in what follows

#### Equations of motion:

$$\ddot{x} - 2\dot{y} = -U_x^{\text{eff}}, \quad \ddot{y} + 2\dot{x} = -U_y^{\text{eff}}$$

where

$$U^{\text{eff}} = -\frac{(x^2 + y^2)}{2} - \frac{1 - \mu}{r_1} - \frac{\mu}{r_2}.$$

 $\Box$  Have a first integral, the Hamiltonian energy, given by  $E(x,y,\dot{x},\dot{y})=rac{1}{2}(\dot{x}^2+\dot{y}^2)+U^{\mathrm{eff}}(x,y).$ 

#### Equations of motion:

$$\ddot{x} - 2\dot{y} = -U_x^{\text{eff}}, \quad \ddot{y} + 2\dot{x} = -U_y^{\text{eff}}$$

where

$$U^{\text{eff}} = -\frac{(x^2 + y^2)}{2} - \frac{1 - \mu}{r_1} - \frac{\mu}{r_2}.$$

 $\Box$  Have a first integral, the Hamiltonian energy, given by  $E(x,y,\dot{x},\dot{y})=\frac{1}{2}(\dot{x}^2+\dot{y}^2)+U^{\rm eff}(x,y).$ 

- Energy manifolds are 3-dimensional surfaces foliating the 4-dimensional phase space.
- □ This is for the planar problem, but the spatial problem is similar.

## **Regions of Possible Motion**

#### Effective potential

□ In a rotating frame, the equations of motion describe a particle moving in an effective potential plus a magnetic field (goes back to work of Jacobi, Hill, etc).



- Dynamics near equilibrium point in spatial problem: **saddle**  $\times$  **center**  $\times$  **center**.
  - **bounded orbits** (periodic/quasi-periodic):  $S^3$  (3-sphere)
  - asymptotic orbits to 3-sphere:  $S^3 \times I$  ("tubes")
  - transit and non-transit orbits.



Asymptotic orbits form **4D invariant manifold tubes**  $(S^3 \times I)$  in 5D energy surface.

 $\Box$  red = unstable, green = stable



- These manifold tubes play an important role in governing what orbits approach or depart from a moon (**transit orbits**)
- and orbits which do not (non-transit orbits)
- transit possible for objects "inside" the tube, otherwise no transit — this is important for transport issues



 Transit orbits can be found using a Poincaré section transversal to a tube.



- One can systematically construct new trajectories, which use little fuel.
  - by linking stable and unstable manifold tubes in the right order
  - and using Poincaré sections to find trajectories "inside" the tubes
- One can construct trajectories involving multiple 3-body systems.

- For a single 3-body system, we wish to link invariant manifold tubes to construct an orbit with a desired itinerary
- Construction of (X; M, I) orbit.



The tubes connecting the X, M, and I regions.

 First, integrate two tubes until they pierce a common Poincaré section transversal to both tubes.



 Second, pick a point in the region of intersection and integrate it forward and backward.



- **Planar**: tubes  $(S \times I)$  separate transit/non-transit orbits.
- Red curve ( $S^1$ ) (Poincaré cut of  $L_2$  unstable manifold. Green curve ( $S^1$ ) (Poincaré cut of  $L_1$  stable manifold.
- Any point inside the intersection region  $\Delta_M$  is a (X; M, I) orbit.



- **Spatial**: Invariant manifold tubes  $(S^3 \times I)$
- Poincaré cut is a topological 3-sphere S<sup>3</sup> in ℝ<sup>4</sup>.
  S<sup>3</sup> looks like disk × disk: ξ<sup>2</sup> + ξ<sup>2</sup> + η<sup>2</sup> + ή<sup>2</sup> = r<sup>2</sup> = r<sup>2</sup><sub>ξ</sub> + r<sup>2</sup><sub>η</sub>
- If  $z = c, \dot{z} = 0$ , its **projection** on  $(y, \dot{y})$  **plane** is a **curve**.
- For **unstable** manifold: any point inside this **curve** is a (X; M) orbit.



- Similarly, while the cut of the stable manifold tube is  $S^3$ , its projection on  $(y, \dot{y})$  plane is a curve for  $z = c, \dot{z} = 0$ .
- Any point inside this curve is a (M, I) orbit.
- Hence, any point inside the intersection region  $\Delta_M$  is a (X;M,I) orbit.





# **Tours of planetary satellite systems.** □ Example 1: Europa → Io → Jupiter



#### 



pgt-3d-orbit-eu.qt

#### • The **Petit Grand Tour** can be constructed as follows:

- Approximate 4-body system as 2 nested **3-body systems**.
- Choose an appropriate Poinaré section.
- Link the invariant manifold tubes in the proper order.
- Integrate initial condition (patch point) in the 4-body model.



#### More refinement needed

#### More refinement needed

□ Control over inclination of final orbit

#### More refinement needed

- Control over inclination of final orbit
- Further reduce fuel cost using other techniques
  - Resonance transition to pump down orbit via repeated close approaches to the moons



Using resonance transition to pump down orbit



Resonance transition as shown by Poincaré map

- Use low (continuous) thrust, rather than impulsive
- Combine with optimal control software (e.g., NTG, COOPT)

#### References

- Gómez, G., W.S. Koon, M.W. Lo, J.E. Marsden, J. Masdemont and S.D. Ross [2001] *Invariant manifolds, the spatial three-body problem and space mission design.* AAS/AIAA Astrodynamics Specialist Conference.
- Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2001] Resonance and capture of Jupiter comets. Celestial Mechanics and Dynamical Astronomy, to appear.
- Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2001] *Low energy transfer to the Moon. Celestial Mechanics and Dynamical Astronomy.* to appear.
- Serban, R., Koon, W.S., M.W. Lo, J.E. Marsden, L.R. Petzold, S.D. Ross, and R.S. Wilson [2001] *Halo orbit mission correction maneuvers using optimal control.* Automatica, to appear.
- Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2000] Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10(2), 427–469.

#### The End