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Introduction

�Theme

� Using dynamical systems theory applied to 3- and 4-
body problems for understanding solar system dynam-
ics and identifying useful orbits for space missions.

�Current research importance

� Development of some NASA mission trajectories, such
as the recently launched Genesis Discovery Mission,
and the upcoming Europa Orbiter Mission

� Of current astrophysical interest for understanding
the transport of solar system material (eg, how ejecta
from Mars gets to Earth, etc.)
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Genesis Discovery Mission
� Genesis will collect solar wind samples at the Sun-Earth

L1 and return them to Earth.

� It was the first mission designed start to finish using
dynamical systems theory.
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Europa Orbiter Mission

�Oceans and life on Europa?

� Recently, there has been interest in sending a
scientific spacecraft to orbit and study Europa.
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Europa Orbiter Mission

Europa Mission
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Current Work
� Goal: Find cheap way to Europa (consuming least amount

of fuel)
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Current Work
� Goal: Find cheap way to Europa (consuming least amount

of fuel)

• Flyby other bodies of interest along the way

� Method: Take full advantage of the phase space struc-
ture to yield optimal trajectory

� Model: Jupiter-Europa-Ganymede-spacecraft 4-body
model considered as two 3-body models

• Extend previous work from planar model to 3D
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History of 3-Body Problem

�Brief history:

� Founding of dynamical systems theory: Poincaré [1890]

� Special orbits: Conley [1963,1968], McGehee [1969]

� Invariant manifolds: Simó, Llibre, and Martinez [1985], Gómez,

Jorba, Masdemont, and Simo [1991]

� Applied to space missions: Howell, Barden, and Lo [1997],

Lo and Ross [1997,1998] Koon, Lo, Marsden, and Ross [2000],

Gómez, Koon, Lo, Marsden, Masdemont, and Ross [2001]

� Using optimal control: Serban, Koon, Lo, Marsden, Petzold,

Ross, and Wilson [2001]
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Three-Body Problem

�Circular restricted 3-body problem

� the two primary bodies move in circles; the much
smaller third body moves in the gravitational field of
the primaries, without affecting them
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Three-Body Problem

�Circular restricted 3-body problem

� the two primary bodies move in circles; the much
smaller third body moves in the gravitational field of
the primaries, without affecting them

� the two primaries could be the Sun and Earth, the
Earth and Moon, or Jupiter and Europa, etc.

� the smaller body could be a spacecraft or asteroid

� we consider the planar and spatial problems

� there are five equilibrium points in the rotating frame,
places of balance which generate interesting dynamics
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Three-Body Problem
• 3 unstable points on line joining two main bodies – L1, L2, L3

• 2 stable points at ±60◦ along the circular orbit – L4, L5
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Three-Body Problem
� orbits exist around L1 and L2; both periodic and quasi-

periodic

• Lyapunov, halo and Lissajous orbits

� one can draw the invariant manifolds assoicated to L1

(and L2) and the orbits surrounding them

� these invariant manifolds play a key role in what follows
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Three-Body Problem
� Equations of motion:

ẍ− 2ẏ = −U eff
x , ÿ + 2ẋ = −U eff

y

where

U eff = −(x2 + y2)

2
− 1− µ

r1
− µ

r2
.

� Have a first integral, the Hamiltonian energy, given by

E(x, y, ẋ, ẏ) =
1

2
(ẋ2 + ẏ2) + U eff(x, y).
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Three-Body Problem
� Equations of motion:

ẍ− 2ẏ = −U eff
x , ÿ + 2ẋ = −U eff

y

where

U eff = −(x2 + y2)

2
− 1− µ

r1
− µ

r2
.

� Have a first integral, the Hamiltonian energy, given by

E(x, y, ẋ, ẏ) =
1

2
(ẋ2 + ẏ2) + U eff(x, y).

� Energy manifolds are 3-dimensional surfaces foliating
the 4-dimensional phase space.

� This is for the planar problem, but the spatial problem
is similar.
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Regions of Possible Motion

�Effective potential

� In a rotating frame, the equations of motion describe
a particle moving in an effective potential plus a mag-
netic field (goes back to work of Jacobi, Hill, etc).
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Transport Between Regions
� Dynamics near equilibrium point in spatial problem:

saddle × center × center.
• bounded orbits (periodic/quasi-periodic): S3 (3-sphere)

• asymptotic orbits to 3-sphere: S3 × I (“tubes”)

• transit and non-transit orbits.
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Transport Between Regions
� Asymptotic orbits form 4D invariant manifold tubes

(S3 × I) in 5D energy surface.

� red = unstable, green = stable
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Transport Between Regions
• These manifold tubes play an important role in governing what

orbits approach or depart from a moon (transit orbits)

• and orbits which do not (non-transit orbits)

• transit possible for objects “inside” the tube, otherwise no
transit — this is important for transport issues
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Transport Between Regions
• Transit orbits can be found using a Poincaré section transver-

sal to a tube.
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Section
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Construction of Trajectories
� One can systematically construct new trajectories, which

use little fuel.

• by linking stable and unstable manifold tubes in the right order

• and using Poincaré sections to find trajectories “inside” the
tubes

� One can construct trajectories involving multiple 3-body
systems.
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Construction of Trajectories
• For a single 3-body system, we wish to link invariant manifold

tubes to construct an orbit with a desired itinerary

• Construction of (X ; M, I) orbit.
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Construction of Trajectories
• First, integrate two tubes until they pierce a common Poincaré
section transversal to both tubes.
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Construction of Trajectories
• Second, pick a point in the region of intersection and integrate

it forward and backward.

Poincare
Section

Tube A

Tube B
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Construction of Trajectories
•Planar: tubes (S × I) separate transit/non-transit orbits.

•Red curve (S1) (Poincaré cut of L2 unstable manifold.
Green curve (S1) (Poincaré cut of L1 stable manifold.

• Any point inside the intersection region ∆M is a (X ; M, I) orbit.

∆M = (X;M,I)

Intersection Region
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Construction of Trajectories
• Spatial: Invariant manifold tubes (S3 × I)

• Poincaré cut is a topological 3-sphere S3 in R
4.

◦ S3 looks like disk × disk: ξ2 + ξ̇2 + η2 + η̇2 = r2 = r2
ξ + r2

η

• If z = c, ż = 0, its projection on (y, ẏ) plane is a curve.

• For unstable manifold: any point inside this curve is a (X ; M)
orbit.
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Construction of Trajectories
• Similarly, while the cut of the stable manifold tube is S3, its

projection on (y, ẏ) plane is a curve for z = c, ż = 0.

• Any point inside this curve is a (M, I) orbit.

• Hence, any point inside the intersection region ∆M is a
(X ; M, I) orbit.
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Construction of Trajectories
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Tour of Jupiter’s Moons

�Tours of planetary satellite systems.

� Example 1: Europa → Io → Jupiter
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Tour of Jupiter’s Moons
� Example 2: Ganymede → Europa → injection into

Europa orbit
Ganymede's orbit

Jupiter
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Tour of Jupiter’s Moons

pgt-3d-orbit-eu.qt
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Tour of Jupiter’s Moons
• The Petit Grand Tour can be constructed as follows:

◦ Approximate 4-body system as 2 nested 3-body systems.

◦ Choose an appropriate Poinaré section.

◦ Link the invariant manifold tubes in the proper order.

◦ Integrate initial condition (patch point) in the 4-body model.
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Further Work

�More refinement needed
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Further Work

�More refinement needed

� Control over inclination of final orbit

� Further reduce fuel cost using other techniques
• Resonance transition to pump down orbit via repeated close

approaches to the moons

Using resonance transition to pump down orbit
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Further Work
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Further Work
• Use low (continuous) thrust, rather than impulsive

• Combine with optimal control software (e.g., NTG, COOPT)
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