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Introduction

Theme

Using dynamical systems theory applied to 3- and 4-
body problems for understanding solar system dynam-
ics and identifying useful orbits for space missions.

Current research importance

Development of some NASA mission trajectories, such
as the recently launched Genesis Discovery Mission,
and the upcoming Europa Orbiter Mission

Of current astrophysical interest for understanding
the transport of solar system material (eg, how ejecta
from Mars gets to Earth, etc.)



Genesis Discovery Mission

Genesis will collect solar wind samples at the Sun-Earth
L1 and return them to Earth.

It was the first mission designed start to finish using
dynamical systems theory.
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Europa Orbiter Mission

Oceans and life on Europa?

Recently, there has been interest in sending a
scientific spacecraft to orbit and study




Europa Orbiter Mission

Europa Mission
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Find cheap way to Europa (consuming least amount

of fuel)
Flyby other bodies of interest along the way

Take full advantage of the phase space struc-
ture to yield optimal trajectory

Jupiter-Europa-Ganymede-spacecraft 4-body
model considered as two 3-body models

Extend previous work from planar model to 3D



History of 3-Body Problem

Brief history:

Founding of dynamical systems theory: Poincaré [1890]
Special orbits: Conley [1963,1968], McGehee [1969]

Invariant manifolds: Simé, Llibre, and Martinez [1985], Gémez,
Jorba, Masdemont, and Simo [1991]

Applied to space missions: Howell, Barden, and Lo [1997],
Lo and Ross [1997,1998] Koon, Lo, Marsden, and Ross [2000],
Gomez, Koon, Lo, Marsden, Masdemont, and Ross [2001]

Using optimal control: Serban, Koon, Lo, Marsden, Petzold,
Ross, and Wilson [2001]
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Three-Body Problem

Circular restricted 3-body problem

the two primary bodies move in circles; the much
smaller third body moves in the gravitational field of
the primaries, without affecting them

the two primaries could be the Sun and Earth, the
Earth and Moon, or Jupiter and Europa, etc.

the smaller body could be a spacecraft or asteroid
we consider the planar and spatial problems

there are five equilibrium points in the rotating frame,
places of balance which generate interesting dynamics



Three-Body Problem

3 unstable points on line joining two main bodies — L, Lo, L3

-60° along the circular orbit — Ly, L5

2 stable points at 4
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Three-Body Problem

orbits exist around L and Ls; both periodic and quasi-
periodic
Lyapunov, halo and Lissajous orbits

one can draw the invariant manifolds assoicated to L
(and Ls) and the orbits surrounding them

these invariant manifolds play a key role in what follows



Three-Body Problem

Equations of motion:

i—2y=-U, §+25=-U"

where N
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2 1 T9
Have a first integral, the Hamiltonian energy, given by
1

E(z,y,4,9) = o(&" +§7) + U (x,y).



Three-Body Problem

Equations of motion:

i—2y=-U" 428 =—-U"

y
where N
g _ @ ry) l-p op
2 1 T9
Have a first integral, the Hamiltonian energy, given by
1

E(z,y,4,9) = 5(3"+ ") + U (2, ).
Energy manifolds are 3-dimensional surfaces foliating
the 4-dimensional phase space.

This is for the planar problem, but the spatial problem
Is similar.



Regions of Possible Motion

Effective potential

In a rotating frame, the equations of motion describe
a particle moving in an effective potential plus a mag-
netic field (goes back to work of Jacobi, Hill, etc).

Exterior
Region (X)

Forbidden
Region

Interior (Sun)
Region (S)

Jupiter
Region (J)

Effective potential Level set shows accessible regions



Transport Between Regions

Dynamics near equilibrium point in spatial problem:

saddle x center x center.
bounded orbits (periodic/quasi-periodic): S* (3-sphere)
asymptotic orbits to 3-sphere: S° x I (“tubes”)
transit and non-transit orbits.
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Transport Between Regions

Asymptotic orbits form 4D invariant manifold tubes
(S° x I) in 5D energy surface.

red = unstable, green = stable
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Transport Between Regions

These manifold tubes play an important role in governing what
orbits approach or depart from a moon (transit orbits)

and orbits which do not (non-transit orbits)

transit possible for objects “inside” the tube, otherwise no
transit — this is important for transport issues
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Transport Between Regions

Transit orbits can be found using a Poincaré section transver-
sal to a tube.
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Construction of Trajectories

One can systematically construct new trajectories, which
use little fuel.

by linking stable and unstable manifold tubes in the right order

and using Poincaré sections to find trajectories “inside” the
tubes

One can construct trajectories involving multiple 3-body
systems.



onstruction of Trajectories

For a single 3-body system, we wish to link invariant manifold
tubes to construct an orbit with a desired itinerary

Construction of (X:; M, I) orbit.
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Construction of Trajectories

First, integrate two tubes until they pierce a common Poincaré
section transversal to both tubes.
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Construction of Trajectories

Second, pick a point in the region of intersection and integrate
it forward and backward.
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Construction of Trajectories

Planar: tubes (S x I) separate transit/non-transit orbits.

Red curve (S') (Poincaré cut of L, unstable manifold.
Green curve (S') (Poincaré cut of L; stable manifold.

Any point inside the intersection region Ay is a (X; M, I) orbit.
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Construction of Trajectories

Spatial: Invariant manifold tubes (S® x I)
Poincaré cut is a topological 3-sphere S? in R*.
5% looks like disk x disk: £ + &+ + 17 =17 =17 + 17
If 2=c¢,z=0, its projection on (y,y) plane is a curve.

For unstable manifold: any point inside this curve is a (X; M)
orbit.
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Construction of Trajectories

Similarly, while the cut of the stable manifold tube is S°, its
projection on (y,y) plane is a curve for z = ¢, 2z = 0.

Any point inside this curve is a (M, I) orbit.

Hence, any point inside the intersection region A,; is a
(X; M, I) orbit.
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onstruction of Trajectories
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Tour of Jupiter’'s Moons

Tours of planetary satellite systems.

Example 1: Europa — lo — Jupiter

1: Begin Tour
2: Europa Encounter
3: Jump Between Tubes
4: lo Encounter

5: Collide with Jupiter



Tour of Jupiter’'s Moons

Example 2: Ganymede — Europa — injection into
Europa orbit

Ganymede's orbit

Manawver Jupter

performed Europa's orbit

Injection into
@ high inclination
Close @proach orbit araund Europa
to Ganymede
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Tour of Jupiter’'s Moons

pgt-3d-orbit-eu.qt




Tour of Jupiter’'s Moons

The Petit Grand Tour can be constructed as follows:

Approximate 4-body system as 2 nested 3-body systems.
Choose an appropriate Poinaré section.

Link the invariant manifold tubes in the proper order.
Integrate initial condition (patch point) in the 4-body model.
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Further Work

More refinement needed
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Further Work

More refinement needed

Control over inclination of final orbit

Further reduce fuel cost using other techniques

Resonance transition to pump down orbit via repeated close
approaches to the moons

Hotes: Labets 1-13 indicale order of evenls
Orbil resonances are 2/¢ orbals : Europa orbals

Using resonance transition to pump down orbit



Further Work

Unstable periodic orbit P4 Unstable periodic orbit P,
Stable manifold of Py / Unstable manifold of P, /
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Further Work

Use low (continuous) thrust, rather than impulsive

Combine with optimal control software (e.g., NTG, COOPT)
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