Invariant Manifolds,

the Spatial 3-Body Problem and Space Mission Design

Shane D. Ross

Control and Dynamical Systems, Caltech
G. Gómez, W.S. Koon, M.W. Lo, J.E. Marsden, J. Masdemont

October 17, 2001

Introduction

Theme
\square Using dynamical systems theory applied to 3- and 4body problems for understanding solar system dynamics and identifying useful orbits for space missions.

Introduction

Theme

\square Using dynamical systems theory applied to 3- and 4body problems for understanding solar system dynamics and identifying useful orbits for space missions.
\square Current research importance
\square Development of some NASA mission trajectories, such as the recently launched Genesis Discovery Mission, and the upcoming Europa Orbiter Mission

Introduction

Theme

\square Using dynamical systems theory applied to 3- and 4body problems for understanding solar system dynamics and identifying useful orbits for space missions.

Current research importance
\square Development of some NASA mission trajectories, such as the recently launched Genesis Discovery Mission, and the upcoming Europa Orbiter Mission
\square Of current astrophysical interest for understanding the transport of solar system material (eg, how ejecta from Mars gets to Earth, etc.)

Genesis Discovery Mission

\square Genesis will collect solar wind samples at the Sun-Earth L1 and return them to Earth.
\square It was the first mission designed start to finish using dynamical systems theory.

Europa Orbiter Mission

Oceans and life on Europa?

\square Recently, there has been interest in sending a scientific spacecraft to orbit and study Europa.

Europa Orbiter Mission

Europa Mission

Current Work

\square Goal: Find cheap way to Europa (consuming least amount of fuel)

Current Work

\square Goal: Find cheap way to Europa (consuming least amount of fuel)

- Flyby other bodies of interest along the way

Current Work

\square Goal: Find cheap way to Europa (consuming least amount of fuel)

- Flyby other bodies of interest along the way
\square Method: Take full advantage of the phase space structure to yield optimal trajectory

Current Work

\square Goal: Find cheap way to Europa (consuming least amount of fuel)

- Flyby other bodies of interest along the way
\square Method: Take full advantage of the phase space structure to yield optimal trajectory
\square Model: Jupiter-Europa-Ganymede-spacecraft 4-body model considered as two 3-body models

Current Work

\square Goal: Find cheap way to Europa (consuming least amount of fuel)

- Flyby other bodies of interest along the way
\square Method: Take full advantage of the phase space structure to yield optimal trajectory
\square Model: Jupiter-Europa-Ganymede-spacecraft 4-body model considered as two 3-body models
- Extend previous work from planar model to 3D

History of 3-Body Problem

Brief history:
\square Founding of dynamical systems theory: Poincaré [1890]
\square Special orbits: Conley [1963,1968], McGehee [1969]
\square Invariant manifolds: Simó, Llibre, and Martinez [1985], Gómez, Jorba, Masdemont, and Simo [1991]
\square Applied to space missions: Howell, Barden, and Lo [1997], Lo and Ross [1997,1998] Koon, Lo, Marsden, and Ross [2000], Gómez, Koon, Lo, Marsden, Masdemont, and Ross [2001]
\square Using optimal control: Serban, Koon, Lo, Marsden, Petzold, Ross, and Wilson [2001]

Three-Body Problem

Circular restricted 3-body problem
\square the two primary bodies move in circles; the much smaller third body moves in the gravitational field of the primaries, without affecting them

Three-Body Problem

Circular restricted 3-body problem
\square the two primary bodies move in circles; the much smaller third body moves in the gravitational field of the primaries, without affecting them
\square the two primaries could be the Sun and Earth, the Earth and Moon, or Jupiter and Europa, etc.
\square the smaller body could be a spacecraft or asteroid

Three-Body Problem

Circular restricted 3-body problem

\square the two primary bodies move in circles; the much smaller third body moves in the gravitational field of the primaries, without affecting them
\square the two primaries could be the Sun and Earth, the Earth and Moon, or Jupiter and Europa, etc.
\square the smaller body could be a spacecraft or asteroid
\square we consider the planar and spatial problems
\square there are five equilibrium points in the rotating frame, places of balance which generate interesting dynamics

Three-Body Problem

- 3 unstable points on line joining two main bodies - L_{1}, L_{2}, L_{3}
- 2 stable points at $\pm 60^{\circ}$ along the circular orbit - L_{4}, L_{5}

Equilibrium points
\square orbits exist around L_{1} and L_{2}; both periodic and quasiperiodic

- Lyapunov, halo and Lissajous orbits
\square one can draw the invariant manifolds assoicated to L_{1} (and L_{2}) and the orbits surrounding them
\square these invariant manifolds play a key role in what follows

Three-Body Problem

\square Equations of motion:

$$
\ddot{x}-2 \dot{y}=-U_{x}^{\text {eff }}, \quad \ddot{y}+2 \dot{x}=-U_{y}^{\text {eff }}
$$

where

$$
U^{\mathrm{eff}}=-\frac{\left(x^{2}+y^{2}\right)}{2}-\frac{1-\mu}{r_{1}}-\frac{\mu}{r_{2}} .
$$

\square Have a first integral, the Hamiltonian energy, given by

$$
E(x, y, \dot{x}, \dot{y})=\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)+U^{\mathrm{eff}}(x, y)
$$

Three-Body Problem

\square Equations of motion:

$$
\ddot{x}-2 \dot{y}=-U_{x}^{\text {eff }}, \quad \ddot{y}+2 \dot{x}=-U_{y}^{\text {eff }}
$$

where

$$
U^{\mathrm{eff}}=-\frac{\left(x^{2}+y^{2}\right)}{2}-\frac{1-\mu}{r_{1}}-\frac{\mu}{r_{2}} .
$$

\square Have a first integral, the Hamiltonian energy, given by

$$
E(x, y, \dot{x}, \dot{y})=\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)+U^{\mathrm{eff}}(x, y)
$$

\square Energy manifolds are 3-dimensional surfaces foliating the 4-dimensional phase space.
\square This is for the planar problem, but the spatial problem is similar.

Regions of Possible Motion

Effective potential

\square In a rotating frame, the equations of motion describe a particle moving in an effective potential plus a magnetic field (goes back to work of Jacobi, Hill, etc).

Effective potential

Level set shows accessible regions

Transport Between Regions

\square Dynamics near equilibrium point in spatial problem: saddle \times center \times center.

- bounded orbits (periodic/quasi-periodic): S^{3} (3-sphere)
- asymptotic orbits to 3 -sphere: $S^{3} \times I$ ("tubes")
- transit and non-transit orbits.

Transport Between Regions

\square Asymptotic orbits form 4D invariant manifold tubes ($S^{3} \times I$) in 5D energy surface.
\square red $=$ unstable, green $=$ stable

Transport Between Regions

- These manifold tubes play an important role in governing what orbits approach or depart from a moon (transit orbits)
- and orbits which do not (non-transit orbits)
- transit possible for objects "inside" the tube, otherwise no transit - this is important for transport issues

Transport Between Regions

- Transit orbits can be found using a Poincaré section transversal to a tube.

Construction of Trajectories

\square One can systematically construct new trajectories, which use little fuel.

- by linking stable and unstable manifold tubes in the right order - and using Poincaré sections to find trajectories "inside" the tubes
\square One can construct trajectories involving multiple 3-body systems.

Construction of Trajectories

- For a single 3-body system, we wish to link invariant manifold tubes to construct an orbit with a desired itinerary
- Construction of $(X ; M, I)$ orbit.

The tubes connecting the X, M, and I regions.

Construction of Trajectories

- First, integrate two tubes until they pierce a common Poincaré section transversal to both tubes.

Construction of Trajectories

- Second, pick a point in the region of intersection and integrate it forward and backward.

Construction of Trajectories

- Planar: tubes $(S \times I)$ separate transit/non-transit orbits.
- Red curve (S^{1}) (Poincaré cut of L_{2} unstable manifold. Green curve (S^{1}) (Poincaré cut of L_{1} stable manifold.
- Any point inside the intersection region Δ_{M} is a $(X ; M, I)$ orbit.

Tubes intersect in position

Poincaré section of intersection

Construction of Trajectories

- Spatial: Invariant manifold tubes $\left(S^{3} \times I\right)$
- Poincaré cut is a topological 3 -sphere S^{3} in \mathbb{R}^{4}.
- S^{3} looks like disk \times disk: $\xi^{2}+\dot{\xi}^{2}+\eta^{2}+\dot{\eta}^{2}=r^{2}=r_{\xi}^{2}+r_{\eta}^{2}$
- If $z=c, \dot{z}=0$, its projection on (y, \dot{y}) plane is a curve.
- For unstable manifold: any point inside this curve is a ($X ; M$) orbit.

(y, \dot{y}) Plane

(z, \dot{z}) Plane

Construction of Trajectories

- Similarly, while the cut of the stable manifold tube is S^{3}, its projection on (y, \dot{y}) plane is a curve for $z=c, \dot{z}=0$.
- Any point inside this curve is a (M, I) orbit.
- Hence, any point inside the intersection region Δ_{M} is a ($X ; M, I$) orbit.

(y, \dot{y}) Plane

(z, \dot{z}) Plane

Intersection Region

Construction of Trajectories

Construction of an (X, M, I) orbit

Tour of Jupiter's Moons

Tours of planetary satellite systems.
\square Example 1: Europa \rightarrow lo \rightarrow Jupiter

1: Begin Tour
2: Europa Encounter
3: Jump Between Tubes
4: lo Encounter
5: Collide with Jupiter

Tour of Jupiter's Moons

\square Example 2: Ganymede \rightarrow Europa \rightarrow injection into Europa orbit

Tour of Jupiter's Moons

pgt-3d-orbit-eu.qt

Tour of Jupiter's Moons

- The Petit Grand Tour can be constructed as follows:
- Approximate 4-body system as 2 nested 3-body systems.
- Choose an appropriate Poinaré section.
- Link the invariant manifold tubes in the proper order.
- Integrate initial condition (patch point) in the 4-body model.

Look for intersection of tubes

Poincaré section at intersection

Further Work

More refinement needed

Further Work

More refinement needed
\square Control over inclination of final orbit

Further Work

More refinement needed

\square Control over inclination of final orbit
\square Further reduce fuel cost using other techniques

- Resonance transition to pump down orbit via repeated close approaches to the moons

Using resonance transition to pump down orbit

Further Work

Resonance transition as shown by Poincaré map

Further Work

- Use low (continuous) thrust, rather than impulsive
- Combine with optimal control software (e.g., NTG, COOPT)

References

- Gómez, G., W.S. Koon, M.W. Lo, J.E. Marsden, J. Masdemont and S.D. Ross [2001] Invariant manifolds, the spatial three-body problem and space mission design. AAS/AIAA Astrodynamics Specialist Conference.
- Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2001] Resonance and capture of Jupiter comets. Celestial Mechanics and Dynamical Astronomy, to appear.
- Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2001] Low energy transfer to the Moon. Celestial Mechanics and Dynamical Astronomy. to appear.
- Serban, R., Koon, W.S., M.W. Lo, J.E. Marsden, L.R. Petzold, S.D. Ross, and R.S. Wilson [2001] Halo orbit mission correction maneuvers using optimal control. Automatica, to appear.
- Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2000] Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10(2), 427-469.

The End

