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� G. Gómez, M. Lo, J. Masdemont

� J. Marsden, W. Koon
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Overview

�Motivation

� Planetary science

� Comet motion, collisions

� Chaotic dynamics, intermittency

�Transport theory

� Restricted three-body problem

� Predictions of theory

� Comparison with observational data?
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Motivation

�Planetary science

� Current astrophysical interest in understanding the
transport and origin of solar system material:
• How likely is Oterma-like resonance transition?

• How likely is Shoemaker-Levy 9-type collision with Jupiter?
– or an asteroid collison with Earth?

• How does impact ejecta get from Mars to Earth?

� Statistical methods applied to the three-body
problem may provide a first-order answer.

� The “interaction” of several three-body systems
increases the complexity.
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Jupiter Family Comets

�Physical example of intermittency

� We consider the historical record of the comet
Oterma from 1910 to 1980
• first in an inertial frame

• then in a rotating frame

• a special case of pattern evocation

� Similar pictures exist for many other comets
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Jupiter Family Comets
• Rapid transition: outside to inside Jupiter’s orbit.

◦ Captured temporarily by Jupiter during transition.

◦ Exterior (2:3 resonance) to interior (3:2 resonance).
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Viewed in Rotating Frame
� Oterma’s orbit in rotating frame with some invariant

manifolds of the 3-body problem superimposed.
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Viewed in Rotating Frame

Oterma - Rotating Frame
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Collisions with Jupiter
� Shoemaker Levy-9: similar energy to Oterma

• Temporary capture and collision; came through L1 or L2

Possible Shoemaker-Levy 9 orbit seen in rotating frame (Chodas, 2000)
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Chaotic Dynamics
Transport through a bottleneck in phase space; intermittency
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Transport Theory

�Chaotic dynamics
=⇒ statistical methods

�Transport theory

� Ensembles of phase space trajectories
• How long or likely to move from one region to another?

• Determine transition probabilities

� Applications:
• Comet and asteroid collision probabilities,

resonance transition probabilities,
transport rates
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Transport Theory

�Transport in the solar system

� For objects of interest
• e.g., Jupiter family comets, near-Earth asteroids, dust

� Identify phase space objects governing transport

� View N -body as multiple restricted 3-body problems

� Consider stable/unstable manifolds of bounded orbits
associated with libration points
• e.g, planar Lyapunov orbits

� Use these to compute statistical quantities
• e.g., probability of resonance transition, escape rates
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Partition the Phase Space
Region A Region B
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Partition the Phase Space

�Systems with potential barriers

� Electron near a nucleus with crossed electric and
magnetic fields
• See Jaffé, Farrelly, and Uzer [1999]
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Partition the Phase Space
� Comet near the Sun and Jupiter

• Some behavior similar to electron!
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Partition the Phase Space

�Partition is specific to problem

� We desire a way of describing dynamical boundaries
that represent the “frontier” between qualitatively
different types of behavior

�Example: motion of a comet

� motion around the Sun

� motion around Jupiter
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Statement of Problem
� Following Wiggins [1992]:

� Suppose we study the motion on a manifoldM
� SupposeM is partitioned into disjoint regions

Ri, i = 1, . . . , NR,

such that

M =

NR⋃
i=1

Ri.

� At t = 0, region Ri is uniformly covered
with species Si

� Thus, species type of a point indicates the
region in which it was located initially
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Statement of Problem
� Statement of the transport problem:

Describe the distribution of species
Si, i = 1, . . . , NR, throughout the regions
Rj, j = 1, . . . , NR, for any time t > 0.
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Statement of Problem
� Some quantities we would like to compute are:

Ti,j(t) = amount of species Si contained in region Rj

Fi,j(t) =
dTi,j

dt (t) = flux of species Si into region Rj
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Probabilities
� For some problems, probability more relevant

• e.g., probability = 0 implies event should not occur

� Test this on celestial mechanics problems of interest
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Restricted 3-Body Prob.

�Planar circular case

� Partition the energy surface: S, J, X regions
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Equilibrium Region

�Look at motion near the potential
barrier, i.e. the equilibrium region
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Local Dynamics

� For fixed energy, the equilibrium region ' S2 × R.

• Stable/unstable manifolds of periodic orbit define mappings
between bounding spheres on either side of the barrier
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Tubes in the 3-Body Problem
� Stable and unstable manifold tubes

• Control transport through the potential barrier.
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Transition Probabilities

�Transport btwn non-adjacent regions

� Consider intersections between the interior of tubes
— the transit orbits connecting regions.

� Tube A and Tube B from different potential barriers.
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Transition Probabilities
� Example: Comet transport between outside and inside

of Jupiter (i.e., Oterma-like transitions)
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Transition Probabilities
� Consider Poincaré section intersected by both tubes.

� Choosing surface {x = constant; px < 0}, we look at
the canonical plane (y, py).
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Transition Probabilities
� Canonical area ratio gives the conditional probability

to pass from outside to inside Jupiter’s orbit.

• Assuming a well-mixed connected region on the energy mfd.
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Transition Probabilities
� Jupiter family comet transitions: X → S, S → X
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Collision Probabilities
� Low velocity impact probabilities

� Assume object enters the planetary region
with an energy slightly above L1 or L2

• eg, Shoemaker-Levy 9 and Earth-impacting asteroids
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Collision Probabilities

�Collision probabilities
◦ Compute from tube intersection with planet on Poincaré section

◦ Planetary diameter is a parameter, in addition to µ and energy E

← Diameter of planet →
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Collision Probabilities

�Collision probabilities
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Collision Probabilities
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Collision Probabilities
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Collision Probabilities
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Conclusion and Future Work

�Transport in the solar system

� Approximate some solar system phenomena using the
restricted 3-body problem

� Planar restricted 3-body problem
• Stable and unstable manifold tubes of libration point orbits

can be used to compute statistical quantities of interest

• Probabilities of transition, collision

� Theory and observation agree

�Future studies to involve multiple
three-body problems
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http://www.cds.caltech.edu/∼shane

The End
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