A Statistical Theory of Transition and Collision Probabilities

Shane D. Ross

Control and Dynamical Systems
California Institute of Technology
International Conference on Libration Point Orbits and Applications
Parador d’Aiguablava, Girona, Spain, 10-14 June 2002

Acknowledgements

\square G. Gómez, M. Lo, J. Masdemont
\square J. Marsden, W. Koon
\square C. Jaffé, D. Farrelly, T. Uzer
\square C. Simó, J. Llibre, R. Martinez
\square K. Howell, B. Barden, R. Wilson
\square E. Belbruno, B. Marsden, J. Miller
\square B. Farquhar, V. Szebehely, C. Marchal
\square J. Moser, C. Conley, R. McGehee

Overview

Motivation

\square Planetary science
\square Comet motion, collisions
\square Chaotic dynamics, intermittency
Transport theory
\square Restricted three-body problem
\square Predictions of theory
\square Comparison with observational data?

Motivation

Planetary science
\square Current astrophysical interest in understanding the transport and origin of solar system material:

- How likely is Oterma-like resonance transition?
- How likely is Shoemaker-Levy 9-type collision with Jupiter?
- or an asteroid collison with Earth?
- How does impact ejecta get from Mars to Earth?
\square Statistical methods applied to the three-body problem may provide a first-order answer.
\square The "interaction" of several three-body systems increases the complexity.

Jupiter Family Comets

Physical example of intermittency
\square We consider the historical record of the comet Oterma from 1910 to 1980

- first in an inertial frame
- then in a rotating frame
- a special case of pattern evocation
\square Similar pictures exist for many other comets

Jupiter Family Comets

- Rapid transition: outside to inside Jupiter's orbit.
- Captured temporarily by Jupiter during transition.
- Exterior (2:3 resonance) to interior (3:2 resonance).

Viewed in Rotating Frame

\square Oterma's orbit in rotating frame with some invariant manifolds of the 3-body problem superimposed.

Viewed in Rotating Frame

Oterma - Rotating Frame

Collisions with Jupiter

Shoemaker Levy-9: similar energy to Oterma

- Temporary capture and collision; came through L1 or L2

Possible Shoemaker-Levy 9 orbit seen in rotating frame (Chodas, 2000)

Chaotic Dynamics

Transport through a bottleneck in phase space; intermittency

Transport Theory

Chaotic dynamics
\Longrightarrow statistical methods
Transport theory
\square Ensembles of phase space trajectories

- How long or likely to move from one region to another?
- Determine transition probabilities
\square Applications:
- Comet and asteroid collision probabilities, resonance transition probabilities, transport rates

Transport Theory

Transport in the solar system
\square For objects of interest

- e.g., Jupiter family comets, near-Earth asteroids, dust
\square Identify phase space objects governing transport
\square View N-body as multiple restricted 3-body problems
\square Consider stable/unstable manifolds of bounded orbits associated with libration points
- e.g, planar Lyapunov orbits
\square Use these to compute statistical quantities
- e.g., probability of resonance transition, escape rates

Partition the Phase Space

Region A Region B

Partition the Phase Space

Systems with potential barriers

\square Electron near a nucleus with crossed electric and magnetic fields

- See Jaffé, Farrelly, and Uzer [1999]

Potential

Configuration Space

Partition the Phase Space

\square Comet near the Sun and Jupiter

- Some behavior similar to electron!

Potential

Configuration Space

Partition the Phase Space

- Partition is specific to problem
\square We desire a way of describing dynamical boundaries that represent the "frontier" between qualitatively different types of behavior

■ Example: motion of a comet
\square motion around the Sun
\square motion around Jupiter

Statement of Problem

\square Following Wiggins [1992]:
\square Suppose we study the motion on a manifold \mathcal{M}
\square Suppose \mathcal{M} is partitioned into disjoint regions

$$
R_{i}, i=1, \ldots, N_{R}
$$

such that

$$
\mathcal{M}=\bigcup_{i=1}^{N_{R}} R_{i}
$$

\square At $t=0$, region R_{i} is uniformly covered with species S_{i}
\square Thus, species type of a point indicates the region in which it was located initially

Statement of Problem

\square Statement of the transport problem:
Describe the distribution of species $S_{i}, i=1, \ldots, N_{R}$, throughout the regions $R_{j}, j=1, \ldots, N_{R}$, for any time $t>0$.

Statement of Problem

\square Some quantities we would like to compute are: $T_{i, j}(t)=$ amount of species S_{i} contained in region R_{j} $F_{i, j}(t)=\frac{d T_{i, j}}{d t}(t)=$ flux of species S_{i} into region R_{j}

Probabilities

For some problems, probability more relevant - e.g., probability $=0$ implies event should not occur
\square Test this on celestial mechanics problems of interest

Restricted 3-Body Prob.

Planar circular case
\square Partition the energy surface: S, J, X regions

Position Space Projection

Equilibrium Region

\square Look at motion near the potential barrier, i.e. the equilibrium region

Position Space Projection

Local Dynamics

\square For fixed energy, the equilibrium region $\simeq S^{2} \times \mathbb{R}$.

- Stable/unstable manifolds of periodic orbit define mappings between bounding spheres on either side of the barrier

Cross-section of Equilibrium Region

Equilibrium Region

Tubes in the 3-Body Problem

\square Stable and unstable manifold tubes

- Control transport through the potential barrier.

Transition Probabilities

Transport btwn non-adjacent regions
\square Consider intersections between the interior of tubes

- the transit orbits connecting regions.
\square Tube A and Tube B from different potential barriers.

Transition Probabilities

\square Example: Comet transport between outside and inside of Jupiter (i.e., Oterma-like transitions)

(a)

Transition Probabilities

\square Consider Poincaré section intersected by both tubes.
\square Choosing surface $\left\{x=\right.$ constant; $\left.p_{x}<0\right\}$, we look at the canonical plane $\left(y, p_{y}\right)$.

Position Space

Canonical Plane $\left(y, p_{y}\right)$

Transition Probabilities

\square Canonical area ratio gives the conditional probability to pass from outside to inside Jupiter's orbit.

- Assuming a well-mixed connected region on the energy mfd.

y
Canonical Plane $\left(y, p_{y}\right)$

Transition Probabilities

\square Jupiter family comet transitions: $\mathbf{X} \rightarrow \mathbf{S}, \mathbf{S} \rightarrow \mathbf{X}$
Transition Probability for Jupiter Family Comets

Collision Probabilities

\square Low velocity impact probabilities
\square Assume object enters the planetary region with an energy slightly above L1 or L2

- eg, Shoemaker-Levy 9 and Earth-impacting asteroids

Example Collision Trajectory

Collision Probabilities

Collision probabilities

- Compute from tube intersection with planet on Poincaré section
- Planetary diameter is a parameter, in addition to μ and energy E

\leftarrow Diameter of planet \rightarrow

Collision Probabilities

Collision probabilities

Poincare Section: Tube Intersecting a Planet

\leftarrow Diameter of planet \rightarrow

Collision Probabilities

Collision Probability for Jupiter Family Comets

Collision Probabilities

Collision Probability for Near-Earth Asteroids

Collision Probabilities

Asteroid Collision Orbit with Earth

Conclusion and Future Work

Transport in the solar system
\square Approximate some solar system phenomena using the restricted 3-body problem
\square Planar restricted 3-body problem

- Stable and unstable manifold tubes of libration point orbits can be used to compute statistical quantities of interest
- Probabilities of transition, collision
\square Theory and observation agree
\square Future studies to involve multiple three-body problems

References

- Jaffé, C., S.D. Ross, M.W. Lo, J. Marsden, D. Farrelly, and T. Uzer [2002] Statistical theory of asteroid escape rates. Physical Review Letters, to appear.
- Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2001] Resonance and capture of Jupiter comets. Celestial Mechanics and Dynamical Astronomy 81(1-2), 27-38.
- Gómez, G., W.S. Koon, M.W. Lo, J.E. Marsden, J. Masdemont and S.D. Ross [2001] Invariant manifolds, the spatial three-body problem and space mission design. AAS/AIAA Astrodynamics Specialist Conference.
- Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2000] Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10(2), 427-469.

For papers, movies, etc., visit the website: http://www.cds.caltech.edu/~shane

The End

