

A Statistical Theory of Transition and Collision Probabilities

Shane D. Ross

Control and Dynamical Systems California Institute of Technology

International Conference on Libration Point Orbits and Applications Parador d'Aiguablava, Girona, Spain, 10-14 June 2002

Acknowledgements

- G. Gómez, M. Lo, J. Masdemont
- J. Marsden, W. Koon
- C. Jaffé, D. Farrelly, T. Uzer
- C. Simó, J. Llibre, R. Martinez
- K. Howell, B. Barden, R. Wilson
- E. Belbruno, B. Marsden, J. Miller
- B. Farquhar, V. Szebehely, C. Marchal
- J. Moser, C. Conley, R. McGehee

Overview

Motivation

- Planetary science
- Comet motion, collisions
- Chaotic dynamics, intermittency

Transport theory

- Restricted three-body problem
- Predictions of theory
- Comparison with observational data?

Motivation

Planetary science

- Current astrophysical interest in understanding the transport and origin of solar system material:
 - How likely is **Oterma**-like resonance transition?
 - How likely is Shoemaker-Levy 9-type collision with Jupiter?
 or an asteroid collison with Earth?
 - How does impact ejecta get from Mars to Earth?
- □ Statistical methods applied to the three-body problem may provide a first-order answer.
- □ The "interaction" of several three-body systems increases the complexity.

Jupiter Family Comets

Physical example of intermittency

- □ We consider the **historical record** of the comet **Oterma** from 1910 to 1980
 - first in an inertial frame
 - then in a rotating frame
 - a special case of pattern evocation

Similar pictures exist for many other comets

Jupiter Family Comets

• Rapid transition: outside to inside Jupiter's orbit.

- Captured temporarily by Jupiter during transition.
- Exterior (2:3 resonance) to interior (3:2 resonance).

x (inertial frame)

Viewed in Rotating Frame

■ Oterma's orbit in rotating frame with some invariant manifolds of the 3-body problem superimposed.

Viewed in Rotating Frame

Oterma - Rotating Frame

Collisions with Jupiter

Shoemaker Levy-9: similar energy to **Oterma**

• Temporary capture and collision; came through L1 or L2

Possible Shoemaker-Levy 9 orbit seen in rotating frame (Chodas, 2000)

Chaotic Dynamics

Transport through a **bottleneck** in phase space; intermittency

Transport Theory

- **Transport theory**
 - **Ensembles** of phase space trajectories
 - How long or likely to move from one region to another?
 - Determine transition probabilities
 - □ Applications:
 - Comet and asteroid collision probabilities, resonance transition probabilities, transport rates

Transport Theory

Transport in the solar system

- □ For objects of interest
 - e.g., Jupiter family comets, near-Earth asteroids, dust
- □ Identify phase space objects governing transport
- \Box View N-body as multiple restricted 3-body problems
- Consider stable/unstable manifolds of bounded orbits associated with libration points
 - e.g, planar Lyapunov orbits
- Use these to **compute statistical quantities**
 - e.g., probability of resonance transition, escape rates

Systems with potential barriers

- Electron near a nucleus with crossed electric and magnetic fields
 - See Jaffé, Farrelly, and Uzer [1999]

Comet near the Sun and Jupiter

• Some behavior similar to electron!

Partition is specific to problem

□ We desire a way of describing dynamical boundaries that represent the "frontier" between qualitatively different types of behavior

Example: motion of a comet

motion around the Sunmotion around Jupiter

Statement of Problem

□ Following Wiggins [1992]:

- \Box Suppose we study the motion on a manifold ${\cal M}$
- \Box Suppose $\mathcal M$ is partitioned into disjoint regions

$$R_i, i=1,\ldots,N_R,$$

such that

$$\mathcal{M} = \bigcup_{i=1}^{N_R} R_i.$$

□ At t = 0, region R_i is uniformly covered with species S_i

□ Thus, species type of a point indicates the region in which it was **located initially**

Statement of Problem

Statement of the transport problem: **Describe the distribution of species** $S_i, i = 1, ..., N_R$, throughout the regions $R_j, j = 1, ..., N_R$, for any time t > 0.

Statement of Problem

Some quantities we would like to compute are: $T_{i,j}(t) = \text{amount of species } S_i \text{ contained in region } R_j$ $F_{i,j}(t) = \frac{dT_{i,j}}{dt}(t) = \text{flux of species } S_i \text{ into region } R_j$

Probabilities

□ For some problems, probability more relevant

- e.g., probability = 0 implies event should not occur
- Test this on celestial mechanics problems of interest

Restricted 3-Body Prob.

Planar circular case

□ Partition the energy surface: **S**, **J**, **X** regions

Equilibrium Region

Look at motion near the potential barrier, i.e. the equilibrium region

Position Space Projection

Local Dynamics

 \Box For fixed energy, the equilibrium region $\simeq S^2 \times \mathbb{R}$.

• Stable/unstable manifolds of periodic orbit define mappings between bounding spheres on either side of the barrier

Cross-section of Equilibrium Region

Equilibrium Region

Tubes in the 3-Body Problem

Stable and **unstable manifold tubes**

• Control transport through the potential barrier.

Transport btwn non-adjacent regions

Consider intersections between the interior of tubes

— the transit orbits connecting regions.

□ Tube A and Tube B from different potential barriers.

Example: Comet transport between outside and inside of Jupiter (i.e., **Oterma**-like transitions)

Consider Poincaré section intersected by both tubes.
 Choosing surface {x = constant; p_x < 0}, we look at the canonical plane (y, p_y).

Canonical area ratio gives the conditional probability to pass from outside to inside Jupiter's orbit.

• Assuming a well-mixed connected region on the energy mfd.

\Box Jupiter family comet transitions: $X \rightarrow S, S \rightarrow X$

- Low velocity impact probabilities
- □ Assume object enters the planetary region with an energy slightly above L1 or L2
 - eg, Shoemaker-Levy 9 and Earth-impacting asteroids

Collision probabilities

• Compute from tube intersection with planet on Poincaré section

 \circ Planetary diameter is a parameter, in addition to μ and energy E

 $\leftarrow \text{ Diameter of planet} \rightarrow$

Conclusion and Future Work

Transport in the solar system

- Approximate some solar system phenomena using the restricted 3-body problem
- Planar restricted 3-body problem
 - Stable and unstable manifold tubes of libration point orbits can be used to compute statistical quantities of interest
 - Probabilities of transition, collision
- Theory and observation agree

Future studies to involve multiple three-body problems

References

- Jaffé, C., S.D. Ross, M.W. Lo, J. Marsden, D. Farrelly, and T. Uzer [2002] *Statistical theory of asteroid escape rates*. Physical Review Letters, to appear.
- Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2001] Resonance and capture of Jupiter comets. Celestial Mechanics and Dynamical Astronomy 81(1-2), 27–38.
- Gómez, G., W.S. Koon, M.W. Lo, J.E. Marsden, J. Masdemont and S.D. Ross
 [2001] *Invariant manifolds, the spatial three-body problem and space mission design.* AAS/AIAA Astrodynamics Specialist Conference.
- Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2000] Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10(2), 427–469.

For papers, movies, etc., visit the website: http://www.cds.caltech.edu/~shane

The End