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Outline of talk

Some problems in dynamical astron-
omy suggest a three-body analysis

e.g., Jupiter-family comets and scattered Kuiper Belt
objects (under Neptune's control)

By applying dynamical systems methods to the pla-
nar, circular restricted three-body problem, several ques-
tions regarding these populations may be addressed

Comparison with observational data is made



Dynamical astronomy

We want to answer several questions regarding the trans-
port and origin of some kinds of solar system material

How do we characterize the motion of Jupiter-family comets

(JFCs) and scattered Kuiper Belt objects (SKBOs)?

How likely is a transition between the exterior and interior
regions (e.g., Oterma)?

How probable is a Shoemaker-Levy 9-type collision with Jupiter?
Or an asteroid collision with Earth (e.g., KT impact)?

Harder questions

How does an SKBO become a JFC (and vice versa)?
How does impact ejecta get from Mars to Earth?



Jupiter-family comets

JFCs and lines of constant

1
T = ——I—Q\/a(l — e2),
a

an approximation of the Jacobi constant

Jupiter Family Comets (mu = 0.0009537, C ~ 2.97-3.06)
T T T

o

e : eccentricity
o

o

a : semimajor axis (AU)



Scattered Kuiper Belt Objects

Current SKBO locations in black, with some Tisserand values w.r.t.
Neptune in red (T =~ 3)
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Scattered Kuiper Belt Objects

Seen in inertial space
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Motion of JFCs and SKBOs

Theory, observation, and numerical experiment show
motion along nearly constant Tisserand parameter (most
of the time)

We approximate the short-timescale motion of JFCs and
SKBOs as occurring within an energy shell of the re-
stricted three-body problem

Several objects may be in nearly the same energy shell,
i.e., all have |T"— T7| < 6T

Can we analyze the structure of an energy shell to de-
termine likely locations of JFCs and SKBOs?



Motion within energy shell

Recall the planar, circular restricted three-body problem
from Jerry Marsden's talk

For fixed p, an energy shell (or energy manifold) of en-
ergy € Is

M(M? 8) — {([I;? y? jj? y) | E(I7 y? 'jj7 y) :g}’
The M(u,e) are 3-dimensional surfaces foliating the
4-dimensional phase space.



Poincaré surface-of-section

Study Poincaré surface of section at fixed energy «:
u,e) — J},jj y:O,y: $7$7M78 <O}

reducing the system to an area preserving map on the
plane. Motion takes place on the cylinder, S' x R.
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Poincaré surface-of-section

The energy shell has regular components (KAM tori) and irregular com-
ponents. Large connected irregular component is the
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Movement among resonances

The motion within the chaotic sea is understood as the movement of

trajectories among resonance regions (see Meiss [1992] and Schroer and
Ott [1997]).

Schematic of two neighboring resonance regions from Meiss [1992]



Movement among resonances

This is confirmed by numerical computation.

Shaded region bounded by stable and unstable invariant manifolds of an
unstable resonant (periodic) orbit.
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Movement among resonances

The unstable and stable manifolds are understood as the backbone of
the dynamics. This is the “homoclinic trellis” in the words of Poincaré.
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Transport quantities

There are several approaches to computing useful trans-
port quantities.

Markov model where the energy shell is partitioned into stochas-
tic regions separated by partial barriers (Meiss et al.)

Set oriented methods where a graph is created to model the
underlying dynamical behavior (Dellnitz et al.)

Lobe dynamics; following intersections of stable and unstable
invariant manifolds of periodic orbits (Wiggins et al.)

These methods are preferred over the “brute force” as-
trodynamic calculations seen in the literature since they
are based on first principles.



Transition Rates

Fluxes give rates and probabilities

Jaffé, Ross, Lo, Marsden, Farrelly, and Uzer [2002]
computed the rate of escape of asteroids
temporarily captured by Mars.

RRKM-like statistical approach

similar to chemical dynamics, see Truhlar [1996]

Consider an asteroid (or other body) in orbit around
Mars (perhaps impact ejecta) at a 3-body energy such
that it can escape toward the Sun.

Interested in rate of escape of such bodies at a fixed
energy, i.e. Fi (1)



Transition Rates

RRKM assumption: all asteroids in the Mars region
at fixed energy are

Then

flux across potential barrier

FEiscape rate = .
Mars region phase space volume

Compare with Monte Carlo simulations of 107,000
particles

randomly selected initial conditions at constant energy



Transition Rates

Theory and numerical simulations agree well.
Monte Carlo simulation (dashed) and theory (solid)

Survival Probability

Number of Periods



Steady state distribution

If the planar, circular restricted three-body problem is
then a statistical mechanics can be built (cf.

ZhiGang [1999]).

Recent work suggests there may be regions of the energy
shell for which the motion is ergodic, in particular the

“chaotic sea” (Jaffé et al. [2002]).

This suggests we compute the
of some observable for particles in the chaotic sea;

a simple method for obtaining the likely locations of any
particles within it.



Steady state distribution

Assuming ergodicity,

1 t
lim _/ A(Qf, yapxapy)dT —
0

t—oo t

/ Az, Y, Pz, Dy) ,g%‘dpxdwdy,

where A(x,y,ps,py) is any physical observable (e.g.,
semimajor axis), one finds that the density function,

p(x, p.), on the surface-of-section, () IS constant.

We can determine the steady state distribution of semi-
major axes; define N(a)da as the number of particles
falling into @ — a+da on the surface-of-section, 2, ..



Steady state distribution

SKBOs should be in regions of high density.
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Collisions with Jupiter

Shoemaker Levy-9: similar energy to Oterma

Temporary capture and collision; came through L1 or L2

Possible Shoemaker-Levy 9 orbit seen in rotating frame (Chodas, 2000)



Collision Probabilities

Low velocity impact probabilities

Assume object enters the planetary region
with an energy slightly above L1 or L2

eg, Shoemaker-Levy 9 and Earth-impacting asteroids

Example Collision Trajectory

Collision!

p

Comes from
Interior Region




Tubes in the 3-Body Problem

Stable and unstable manifold tubes

Control transport through the potential barrier.
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Collision Probabilities

Collision probabilities

Compute from tube intersection with planet on Poincaré section

Planetary diameter is a parameter, in addition to 1 and energy E

< Diameter of planet —



Collision Probabilities

Collision probabilities

Poincare Section: Tube Intersecting a Planet
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Collision Probabilities

Collision probability (%)
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Collision Probabilities

Collision Probability for Near—Earth Asteroids
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The End
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