The Lunar L₁ Gateway: Portal to the Planets

Surrey Astrodynamics Workshop

22 April 2002

Acknowledgements

- J. Marsden, W.S. Koon (Caltech)
- M. Lo, L. Romans, G. Hockney, B. Barden, M-K. Chung,
 R. Wilson, J. Evans, P. Chodas (Jet Propulsion Laboratory)
- G. Gomez, J. Masdemont (Barcelona)
- A. Barr, K. Museth, C. Koenig, M. Montague (Caltech)
- **S. Thrasher, C. Thomas, J. Turpin (Caltech)**
- J. Sercel, M. Parker, R. McDaniel, L. Voss (Caltech)
- **G. Condon, D. Pearson** (Johnson Space Center)
- **K. Howell, B. Marchand (Purdue)**
- And the work of many others: H. Poincare, J. Moser, C. Conley, R. McGehee, R. Farquhar, J. Llibre, R. Martinez, C. Simo, S. Wiggins

Themes

- Transport in the Solar System Via the InterPlanetary Superhighway (IPS)
 - Three Body Problem
 - Material Transport in Celestial Mechanics
 - Applications to Space Mission Design
- •Lunar L1 Gateway Station
 - Low cost to many destinations
 - Transportation hub
 - Construction & repair facility
 - Possible commercial uses

Why Study Transport Via the IPS?

• Planetary Science

- Transport of material between planets
- Comet, asteroid impacts

• Extend Human Presence in Space

- Low energy transport to/from gateway stations
- Capture and mining of near-Earth asteroids

Outline

• The InterPlanetary Superhighway

- Tubes connecting the solar system
- Transport in the Solar System
 - eg, Jupiter comets

New Mission Concepts

- Petit Grand Tour of Jovian moons
- Lunar L₁ Gateway station
 - Human servicing of libration missions from lunar L₁
 - Potential commercial uses
- Rendezvous with Mars, A Human Mission

Halo Orbit Transfer and Insertion Via The InterPlanetary Superhighway

Lagrange Points in Near-Earth Space

• Every 3 Body System Has 5 Lagrange Points

- Earth-Moon-S/C: LL₁, LL₂, ... LL₅
- Sun-Earth-S/C: EL_1 , EL_2 , ...
- Generate the InterPlanetary Superhighway near Earth

Orbital Zoology Near Lagrange Points

Four Families of Orbits (Conley [1968], McGehee [1969])

- Periodic Orbit (Planar Lyapunov)
- Spiral Asymptotic Orbit (Stable Manifold Pictured)
- Transit Orbits (<u>MUST PASS THRU PERIODIC ORBIT</u>)
- Non-Transit Orbits (May Transit After Several Revolutions)

Why Dynamical Systems Theory?

- Traditional Approach
 - Requires First Hand Numerical Knowledge of Phase Space
 - Each Trajectory Must Be Computed Manually By Hand (Slow)
 - Optimization Nearly Impossible
- Dynamical Systems Provides Theory
 - Software: Automatic Generation of Trajectories
 - Software: Automatically Maps Out Phase Space Structures
 - Near Optimum Trajectory
 - Automated Parametric Studies & Monte Carlo Simulations

ISEE3/ICE Orbit

Genesis Unstable Manifold

Using Poincare Sections

- Invariant Manifold Structures in High Dimensions (>3)
- Cross Sections (Poincare) Reduce the Dimensions by 1
 - Periodic Orbits Become Finite Number of Points
 - Chaotic Orbits Cover Large Portions of Phase Space
 - Reveals Resonance Structure of Phase Space

Tunneling Through Phase Space

Cross Section of Tube Intersection Partitions Global Behavior

- Yellow Region Tunnels Through from X Through J to S Regions
- Green Circle: J to S Region, Red Circle: X to J Region
- Genesis-Type Trajectory Between L₂ and L₁ Halo Orbits (Heteroclinic)

Comet Oterma Under Jupiter IPS Control

- Inertial Frame Is Unrevealing
- Rotating Frame Shows Pattern
 - Oterma follows a homoclinicheteroclinic chain
 - Chaotic orbit

Shoemaker-Levy 9 Collision

Simulation of SL9 Collision

• Tubes intersect planets

 Compare SL9 orbit (below) to computed orbit of similar energy (right)

Poincare Section of the InterPlanetary Superhighway (IPS)

Fast Transport from Kuiper to Asteroid Belt

Only 250 years

- Origin of Jupiter Comets
- Replenish Asteroid Belt
- Escape from Solar
 System
- Suggests New Low Thrust Algorithm?

Kuiper to Asteroid Belt (ref: Lo, Thomas, Turpin)

Petit Grand Tour of Jovian Moons

- Similar path can be constructed for a new mission concept: the Petit Grand Tour
- Serial low energy captures, transfers
 between moons
- Near circular transfer orbits avoid Jupiter radiation
- Available at all outer planets

Jovian Superhighways and Europa Missions

• Petit Grand Tour

• May Be Useful to Europa Missions

Lunar L₁ Gateway

- Possible oceans, life?
- Propellant Savings
 - Transfer AV ~ 0.5 Hohmann
 - Ref: Koon, Lo, Marsden, Ross [2002]
- Faster Trajectory Design

- New Understanding of 3D Transport Provides Systematic Design of High Inclination Low Energy Capture into Europa Orbit
- Gomez, Koon, Lo, Marsden, Masdemont, Ross [2001]

-1.5

Europa Rotating Frame

Fuel Usage Drastically Reduced

- New computation (Ross, 2002)
- Serial visits to Galilean moons, final Europa capture
 - Total Delta-V ~ 20 m/s!
 - 1500 days transfer time (can be greatly reduced)

Transport Along Energy Surface

Jumping Between Resonances on an Energy Surface

Poincare section revealing resonances on the way to Europa

Lunar L₁ Gateway

Moon

Lunar L₁ Gateway Station

The closest rest stop on the InterPlanetary Superhighway

Future Constellations & Formation Flight Near Sun-Earth L₂

Quasihalo Orbits

L1

Ref: Howell, Barden, et al. [2001]

TPF Formation

Ref: Lo, Masdemont, et al. [2001]

Human Service to Libration Point Missions

- 3 Month Transfers to Earth L₂ Too Long for Humans
- Short Transfers Too Costly, Difficult
- Infrastructure Too Expensive
- Take Smaller Step from LEO

STA-103 astronauts repairing the Hubble Space Telescope

Solution:

Human Service from Lunar L₁ Gateway

- Send S/C Between Lunar L₁ Gateway Hub and Earth L₂ via the Interplanetary Superhighway
 - 50 m/s energy difference btwn LL₁ (Lunar) and EL₂ (Earth)
- Lunar L₁ Orbits Accessible from Earth, LEO, Moon
 - Short Transfers: Hours to 7 Days

Figure based on Condon and Pearson [2001]

Use InterPlanetary Superhighway

- Interplanetary Superhighway: Low Energy Portals & Tunnels Generated by Lagrange Points
- Portals = Halo Orbits! Tunnels = Invariant Manifolds

Earth-Moon IPS Interchange

- Easy Return of S/C from L2 to
 - Lunar L1/L2 Orbit
 - Lunar Capture
 Orbit
 - Earth Return
 Orbit
- Potential for Human Servicing & Replacements
- Staging for Interplanetary Launch

A CROSS SECTION OF THE **SUN-EARTH** AND **EARTH-MOON** IPS PARTITIONS THE ORBITAL DESIGN SPACE INTO CLASSES

Lunar L₁ to Earth L₂ Orbit Transfer

- Build Instruments & S/C at Lunar L₁ Station
- Transfer S/C from LL₁ Station to Earth-L₂ LIO
 - LIO = Libration Orbit
- Service S/C at Earth L₂ LIO from LL₁ Gateway Hub

Lunar Rotating Frame

Earth Rotating Frame

Lunar L₁ to Earth L₂ Orbit Transfer

Lunar L₁ to Earth L₂ Orbit Transfer

Servicing Earth L2 Missions at Lunar L1 Gateway Station

Servicing Halo Missions at the Lunar L1 Gateway

Near Earth Asteroids: Armageddon Or Opportunity?

Bring Near-Earth Asteroids to Lunar L1 Using IPS

- Asteroid mining using space resources
 - Semiconducting and precious metals
 - Construction materials for large space structures
 - for tourism, zero-g manufacturing, solar power generation
 - Ref: Sercel, Ross, Parker, McDaniel, Voss [2002]

Human Rendezvous with Mars

Round Trip to Mars from the Lunar L1 Gateway [Draft]

Conclusion

• InterPlanetary Superhighway (IPS)

- Natural paths connecting solar system
- Arises from dynamics in three-body problem
- Applications to Space Mission Design
 - Petit Grand Tour of Jovian moons
 - "Shoot the Moon": cheap capture into lunar orbit

•Lunar L1 Gateway Station

- Low cost to many destinations
 - Transportation hub
 - Construction & repair of Earth L2 spacecraft
- Bring near-Earth asteroid to Lunar L1 using IPS
 - Build large structures, tourism?

References and Further Information

• For more information, see the website: www.cds.caltech.edu/~shane

• Papers

- Lo, Ross [2001] The Lunar L1 Gateway: Portal to the Stars and Beyond. AIAA Space 2001 Conference, Albequerque, New Mexico, USA, 28-30 August.
- Koon, Lo, Marsden, Ross [2001] Low Energy Transfer to the Moon. Celestial Mechanics and Dynamical Astronomy 81(1-2), 63-73.
- Koon, Lo, Marsden, Ross [2002] Constructing a low energy transfer between Jovian moons, *Contemporary Mathematics* 292, 124-129.
- Gomez, Koon, Lo, Marsden, Masdemont, Ross [2001] Invariant Manifolds and Material Transport in the Solar System. AAS/AIAA Astrodynamics Specialist Conference, Quebec City, Canada, 3 July – 2 August (Paper AAS 01-301).
- Koon, Lo, Marsden, Ross [2000] Heteroclinic Connections between Periodic Orbits and Resonance Transitions in Celestial Mechanics. *Chaos* 10(2), 427-469.

contact

Upcoming Conference (June 10-14)

Gerard Gómez

Dept. Matemàtica Aplicada i Anàlisi Universitat de Barcelona Gran Via, 585. 08007 Barcelona, Spain Tel: 34-934021651 e-mail: lagrange@maia.ub.es

Lunar L₁ Gateway

Martin W. Lo

Jet Propulsion Laboratory, NASA-JPL MS-301/142 4800 Oak Grove Dr. Pasadena, CA 91109 Tel: 1-818-3547169 e-mail: lagrange@maia.ub.es

Josep J. Masdemont

Dept. Matemàtica Aplicada I Universitat Politècnica de Catalunya Diagonal 647, ETSEIB-UPC 08028 Barcelona, Spain Tel: 34-934016663 e-mail: lagrange@maia.ub.es

F_{or} further information, please lagrange@maia.ub.es

June 10-14, 2002 Parador d'Aiguablava, Girona, Spain

http://europa.ieec.fcr.es/libpoint/main.html

INTERNATIONAL CONFERENCE ON LIBRATION POINT ORBITS AND APPLICATIONS