Cylindrical Manifolds and Tube Dynamics in the Restricted Three-Body Problem

Shane D. Ross

Control and Dynamical Systems, Caltech www.cds.caltech.edu/~shane/pub/thesis/

April 7, 2004

Acknowledgements

\square Committee: M. Lo, J. Marsden, R. Murray, D. Scheeres
\square W. Koon
\square G. Gómez, J. Masdemont
\square CDS staff \& students
\square JPL's Navigation \& Mission Design section

Motivation

Low energy spacecraft trajectories
\square Genesis has collected solar wind samples at the SunEarth L1 and will return them to Earth this September.

First mission designed using dynamical systems theory.

Genesis Spacecraft

Where Genesis Is Today

Motivation

\square Low energy transfer to the Moon

Outline of Talk

Introduction and Background

\square Planar circular restricted three-body problem
\square Motion near the collinear equilibria
My Contribution
\square Construction of trajectories with prescribed itineraries
\square Trajectories in the four-body problem

- patching two three-body trajectories
- e.g., low energy transfer to the Moon
\square Current and Ongoing Work
\square Summary and Conclusions

Three-Body Problem

\square Planar circular restricted three-body problem

- P in field of two bodies, m_{1} and m_{2}
$-x-y$ frame rotates w.r.t. $X-Y$ inertial frame

Three-Body Problem

\square Equations of motion describe P moving in an effective potential plus a coriolis force

Position Space

Effective Potential

Hamiltonian System

\square Hamiltonian function

$$
H\left(x, y, p_{x}, p_{y}\right)=\frac{1}{2}\left(\left(p_{x}+y\right)^{2}+\left(p_{y}-x\right)^{2}\right)+\bar{U}(x, y)
$$

where p_{x} and p_{y} are the conjugate momenta,

$$
\begin{aligned}
p_{x} & =\dot{x}-y=v_{x}-y, \\
p_{y} & =\dot{y}+x=v_{y}+x,
\end{aligned}
$$

and

$$
\bar{U}(x, y)=-\frac{1}{2}\left(x^{2}+y^{2}\right)-\frac{1-\mu}{r_{1}}-\frac{\mu}{r_{2}}
$$

where r_{1} and r_{2} are the distances of P from m_{1} and m_{2} and

$$
\mu=\frac{m_{2}}{m_{1}+m_{2}} \in(0,0.5] .
$$

Equations of Motion

\square Point in phase space: $q=\left(x, y, v_{x}, v_{y}\right) \in \mathbb{R}^{4}$
\square Equations of motion, $\dot{q}=f(q)$, can be written as

$$
\begin{aligned}
\dot{x} & =v_{x} \\
\dot{y} & =v_{y} \\
\dot{v}_{x} & =2 v_{y}-\frac{\partial \bar{U}}{\partial x} \\
\dot{v}_{y} & =-2 v_{x}-\frac{\partial \bar{U}}{\partial y}
\end{aligned}
$$

conserving an energy integral,

$$
E(x, y, \dot{x}, \dot{y})=\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)+\bar{U}(x, y)
$$

Motion in Energy Surface

\square Fix parameter μ
\square Energy surface for energy e is

$$
\mathcal{M}(\mu, e)=\{(x, y, \dot{x}, \dot{y}) \mid E(x, y, \dot{x}, \dot{y})=e\} .
$$

For a fixed μ and energy e, one can consider the surface $\mathcal{M}(\mu, e)$ as a three-dimensional surface embedded in the four-dimensional phase space.
\square Projection of $\mathcal{M}(\mu, e)$ onto position space,

$$
M(\mu, e)=\{(x, y) \mid \bar{U}(x, y ; \mu) \leq e\}
$$

is the region of possible motion (Hill's region).
\square Boundary of $M(\mu, e)$ places bounds on particle motion.

Realms of Possible Motion

\square For fixed μ, e gives the connectivity of three realms

Case 1: $E<E_{1}$

Case 2: $E_{1}<E<E_{2}$

Case 3: $E_{2}<E<E_{3}$

Case $4: E_{3}<E<E_{4}$

Case $5: E>E_{4}$

Realms of Possible Motion

Neck regions related to collinear unstable equilibria, x's

The location of all the equilibria for $\mu=0.3$

Realms of Possible Motion

\square Energy Case 3: For $m_{1}=$ Sun, $m_{2}=$ Jupiter, we divide the Hill's region into five sets; three realms, S, J, X, and two equilibrium neck regions, R_{1}, R_{2}

Equilibrium Points

Find $\bar{q}=\left(\bar{x}, \bar{y}, \bar{v}_{x}, \bar{v}_{y}\right)$ s.t. $\dot{\bar{q}}=f(\bar{q})=0$
\square Have form $(\bar{x}, \bar{y}, 0,0)$ where (\bar{x}, \bar{y}) are critical points of $\bar{U}(x, y)$, i.e., $\bar{U}_{x}=\bar{U}_{y}=0$, where $\bar{U}_{a} \equiv \frac{\partial \bar{U}}{\partial a}$

Critical Points of $\bar{U}(x, y)$

Equilibrium Points

\square Consider x-axis solutions; the collinear equilibria
$\square \bar{U}_{x}=\bar{U}_{y}=0 \Rightarrow$ polynomial in x
\square depends on parameter μ

The graph of $\bar{U}(x, 0)$ for $\mu=0.1$

Equilibrium Regions

\square Phase space near equilibrium points
\square Consider the equilibrium $\bar{q}=L$ (either L_{1} or L_{2})
\square Eigenvalues of linearized equations about L are $\pm \lambda$ and $\pm i \nu$ with corresponding eigenvectors $u_{1}, u_{2}, w_{1}, w_{2}$
\square Equilibrium region has a saddle \times center geometry

Equilibrium Regions

Eigenvectors Define Coordinate Frame

\square Let the eigenvectors $u_{1}, u_{2}, w_{1}, w_{2}$ be the coordinate axes with corresponding new coordinates $\left(\xi, \eta, \zeta_{1}, \zeta_{2}\right)$. The differential equations assume the simple form

$$
\begin{array}{ll}
\dot{\xi}=\lambda \xi, & \dot{\eta}=-\lambda \eta \\
\dot{\zeta}_{1}=\nu \zeta_{2}, & \dot{\zeta}_{2}=-\nu \zeta_{1}
\end{array}
$$

and the energy function becomes

$$
E_{l}=\lambda \xi \eta+\frac{\nu}{2}\left(\zeta_{1}^{2}+\zeta_{2}^{2}\right)
$$

\square Two additional integrals: $\xi \eta$ and $\rho \equiv|\zeta|^{2}=\zeta_{1}^{2}+\zeta_{2}^{2}$, where $\zeta=\zeta_{1}+i \zeta_{2}$

Equilibrium Regions

\square For positive ε and c, the region \mathcal{R} (either \mathcal{R}_{1} or \mathcal{R}_{2}), is determined by

$$
E_{l}=\varepsilon, \quad \text { and } \quad|\eta-\xi| \leq c,
$$

is homeomorphic to $S^{2} \times I$; namely, for each fixed value of $(\eta-\xi)$ on the interval $I=[-c, c]$, the equation $E_{l}=\varepsilon$ determines the two-sphere

$$
\frac{\lambda}{4}(\eta+\xi)^{2}+\frac{\nu}{2}\left(\zeta_{1}^{2}+\zeta_{2}^{2}\right)=\varepsilon+\frac{\lambda}{4}(\eta-\xi)^{2},
$$

in the variables $\left((\eta+\xi), \zeta_{1}, \zeta_{2}\right)$.

Bounding Spheres of \mathcal{R}

$\square n_{1}$, the left side $(\eta-\xi=-c)$ n_{2}, the right side $(\eta-\xi=c)$

The projection of the flow onto the $\eta-\xi$ plane

Transit \& Non-transit Orbits

\square There are transit orbits, T_{12}, T_{21} and non-transit orbits, T_{11}, T_{22}, separated by asymptotic sets to a p.o.

Transit, non-transit, and asymptotic orbits projected onto the $\eta-\xi$ plane

Twisting of Orbits

\square We compute that

$$
\frac{d}{d t} \arg \zeta=-\nu
$$

i.e., orbits "twist" while in \mathcal{R} in proportion to the time T spent in \mathcal{R}, where

$$
T=\frac{1}{\lambda}\left(\ln \frac{2 \lambda\left(\eta^{0}\right)^{2}}{\nu}-\ln \left(\rho^{*}-\rho\right)\right)
$$

where η^{0} is the initial condition on the bounding sphere and $\rho=\rho^{*}=2 \varepsilon / \nu$ only for the asymptotic orbits.
\square Amount of twisting depends sensitively on how close an orbit comes to the cylinders of asymptotic orbits, i.e., depends on $\left(\rho^{*}-\rho\right)>0$.

Orbits in Position Space

\square Appearance of orbits in position space
\square The general (real) solution has the form

$$
\begin{aligned}
u(t) & =\left(x(t), y(t), v_{x}(t), v_{y}(t)\right) \\
& =\alpha_{1} e^{\lambda t} u_{1}+\alpha_{2} e^{-\lambda t} u_{2}+2 \operatorname{Re}\left(\beta e^{i \nu t} w_{1}\right),
\end{aligned}
$$

where α_{1}, α_{2} are real and $\beta=\beta_{1}+i \beta_{2}$ is complex.
\square Four categories of orbits, depending on the signs of α_{1} and α_{2}.
\square By a theorem of Moser [1958], all the qualitative results carry over to the nonlinear system.

Orbits in Position Space

Equilibrium Region: Summary

\square The Flow in the Equilibrium Region

\square In summary, the phase space in the equilibrium region can be partitioned into four categories of distinctly different kinds of motion:
(1) periodic orbits, a.k.a., Lyapunov orbits
(2) asymptotic orbits, i.e., invariant stable and unstable cylindrical manifolds (henceforth called tubes)
(3) transit orbits, moving from one realm to another (4) non-transit orbits, returning to their original realm
\square These categories help us understand the connectivity of the global phase space

Tube Dynamics

\square All motion between realms connected by equilibrium neck regions \mathcal{R} must occur through the interior of the cylindrical stable and unstable manifold tubes

Tube Dynamics: Itineraries

\square We can find/construct an orbit with any itinerary, e.g., (..., J, X, J, S, J, ..), where X, J and S denote the different realms (symbolic dynamics)

Construction of Trajectories

\square Systematic construction of trajectories with desired itineraries - trajectories which use no fuel.

- by linking tubes in the right order \rightarrow tube hopping

Construction of Trajectories

■ Ex. Trajectory with Itinerary (X, J, S)
\square search for an initial condition with this itinerary

Construction of Trajectories

\square seek area on 2D Poincaré section corresponding to (X, J, S) itinerary region; an "itinerarea"

The location of four Poincaré sections U_{i}

Construction of Trajectories

$\square T_{[X], J}$ is the solid tube of trajectories currently in the X realm and heading toward the J realm

- Let's seek itinerarea $(X,[J], S)$

How the tubes connect the U_{i}

Construction of Trajectories

Construction of Trajectories

An itinerarea with label (X,[J],S)
\square Denote the intersection $(X,[J]) \bigcap([J], S)$ by $(X,[J], S)$

Construction of Trajectories

\square Forward and backward numerical integration of any initial condition within the itinerarea yields a trajectory with the desired itinerary

Construction of Trajectories

\square Trajectories with longer itineraries can be produced

- e.g., (X, J, S, J, X)

Restricted 4-Body Problem

\square Solutions to the restricted 4-body problem can be built up from solutions to the rest. 3-body problem
\square One system of particular interest is a spacecraft in the Earth-Moon vicinity, with the Sun's perturbation
\square Example mission: low energy transfer to the Moon

Low Energy to the Moon

\square Motivation: systematic construction of trajectories like the 1991 Hiten trajectory. This trajectory uses significantly less on-board fuel than an Apollo-like transfer using third body effects.
\square The key is ballistic, or unpropelled, capture by the Moon
\square Originally found via a trial-and-error approach, before tube dynamics in the system was known (Belbruno and Miller [1993])

Low Energy to the Moon

\square Patched three-body approximation: we assume the S/C's trajectory can be divided into two portions of rest. 3body problem solutions

Low Energy to the Moon

(1) Sun-Earth-S/C
(2) Earth-Moon-S/C

Low Energy to the Moon

\square Consider the intersection of tubes in these two systems (if any exists) on a Poincaré section

Low Energy to the Moon

Earth-Moon-S/C - Ballistic capture

\square Find boundary of tube of lunar capture orbits

Low Energy to the Moon

■ Sun-Earth-S/C - Twisting of orbits
\square Amount of twist depends sensitively on distance from tube boundary; use this to target Earth parking orbit

Earth Targeting

Poincare Section

y-position

Using "Twisting"

x-position

Low Energy to the Moon

\square Integrate initial conditions forward and backward to generate desired trajectory, allowing for velocity discontinuity (maneuver of size ΔV to "tube hop")

Sun-Earth L_{2} Orbit Unstable Manifold Cut

Low Energy to the Moon

\square Verification: use these initial conditions as an initial guess in restricted 4-body model, the bicircular model
\square Small velocity discontinuity at patch point: $\Delta V=34 \mathrm{~m} / \mathrm{s}$
\square Uses 20% less on-board fuel than an Apollo-like transfer - the trade-off is a longer flight time

Low Energy to the Moon

Sun-Earth Rotating Frame

Inertial Frame

Current and Ongoing Work

\square Multi-moon orbiter, $\Delta V=22 \mathrm{~m} / \mathrm{s}(!!!) \Rightarrow \mathrm{JIMO}$
Low Energy Tour of Jupiter's Moons
Seen in Jovicentric Inertial Frame

Current and Ongoing Work

- Ongoing challenges

\square Make an automated algorithm for trajectory generation
\square Consider model uncertainty, unmodeled dynamics, noise
\square Trajectory correction when errors occur

- Re-targeting of original (nominal) trajectory vs. regeneration of nominal trajectory
- Trajectory correction work for Genesis is a first step

Current and Ongoing Work

\square Getting Genesis onto the destination orbit at the right time, while minimizing fuel consumption

from Serban, Koon, Lo, Marsden, Petzold, Ross, and Wilson [2002]

Current and Ongoing Work

\square Incorporation of low-thrust

Spiral out from Europa

Europa to lo transfer

Current and Ongoing Work

\square Coordination with goals/constraints of real missions e.g., time at each moon, radiation dose, max. flight time
\square Decrease flight time: evidence suggests large decrease in time for small increase in ΔV

Current and Ongoing Work

\square Spin-off: Results also apply to mathematically similar problems in chemistry and astrophysics

- phase space transport
\square Applications
- chemical reaction rates
- asteroid collision prediction

Summary and Conclusions

\square For certain energies of the planar circular rest. 3-body problem, the phase space can be divided into sets; three large realms and equilibrium regions connecting them
\square We consider stable and unstable manifolds of p.o.'s in the equil. regions
\square The manifolds have a cylindrical geometry and the physical property that all motion from one realm to another must pass through their interior
\square The study of the cylindrical manifolds, tube dynamics, can be used to design spacecraft trajectories
\square Tube dynamics applicable in other physical problems too

