

Cylindrical Manifolds and Tube Dynamics in the Restricted Three-Body Problem

Shane D. Ross

Control and Dynamical Systems, Caltech www.cds.caltech.edu/~shane/pub/thesis/

April 7, 2004

Acknowledgements

- Committee: M. Lo, J. Marsden, R. Murray, D. Scheeres
- 🗆 W. Koon
- G. Gómez, J. Masdemont
- CDS staff & students
- □ JPL's Navigation & Mission Design section

Motivation

Low energy spacecraft trajectories

 Genesis has collected solar wind samples at the Sun-Earth L1 and will return them to Earth this September.
 First mission designed using dynamical systems theory.

Genesis Spacecraft

Where Genesis Is Today

Motivation

Low energy transfer to the Moon

Outline of Talk

Introduction and Background

- Planar circular restricted three-body problem
- □ Motion near the collinear equilibria

My Contribution

- Construction of trajectories with prescribed itineraries
- □ Trajectories in the four-body problem
 - patching two three-body trajectories
 - e.g., low energy transfer to the Moon
- □ Current and Ongoing Work
- Summary and Conclusions

Three-Body Problem

□ Planar circular restricted three-body problem

- P in field of two bodies, m_1 and m_2
- x-y frame rotates w.r.t. X-Y inertial frame

Three-Body Problem

 \Box Equations of motion describe P moving in an effective potential plus a coriolis force

Hamiltonian System

□ Hamiltonian function

$$H(x, y, p_x, p_y) = \frac{1}{2}((p_x + y)^2 + (p_y - x)^2) + \bar{U}(x, y),$$

where p_x and p_y are the conjugate momenta,

$$p_x = \dot{x} - y = v_x - y,$$
$$p_y = \dot{y} + x = v_y + x,$$

and

$$\bar{U}(x,y) = -\frac{1}{2}(x^2 + y^2) - \frac{1-\mu}{r_1} - \frac{\mu}{r_2}$$

where r_1 and r_2 are the distances of P from m_1 and m_2 and

$$\mu = \frac{m_2}{m_1 + m_2} \in (0, 0.5].$$

Equations of Motion

 \Box Point in phase space: $q = (x, y, v_x, v_y) \in \mathbb{R}^4$

 \Box Equations of motion, $\dot{q} = f(q)$, can be written as

$$\dot{x} = v_x,$$

$$\dot{y} = v_y,$$

$$\dot{v_x} = 2v_y - \frac{\partial \bar{U}}{\partial x},$$

$$\dot{v_y} = -2v_x - \frac{\partial \bar{U}}{\partial y}$$

conserving an energy integral,

$$E(x, y, \dot{x}, \dot{y}) = \frac{1}{2}(\dot{x}^2 + \dot{y}^2) + \bar{U}(x, y).$$

Motion in Energy Surface

 \Box Fix parameter μ

 \Box Energy surface for energy e is

 $\mathcal{M}(\mu, e) = \{ (x, y, \dot{x}, \dot{y}) \mid E(x, y, \dot{x}, \dot{y}) = e \}.$

For a fixed μ and energy e, one can consider the surface $\mathcal{M}(\mu, e)$ as a three-dimensional surface embedded in the four-dimensional phase space.

 \Box Projection of $\mathcal{M}(\mu,e)$ onto position space,

$$M(\mu, e) = \{(x, y) \mid \overline{U}(x, y; \mu) \le e\},\$$

is the region of possible motion (Hill's region).

 \Box Boundary of $M(\mu,e)$ places bounds on particle motion.

Realms of Possible Motion

 \Box For fixed μ , e gives the connectivity of three realms

Realms of Possible Motion

□ Neck regions related to collinear unstable equilibria, **x**'s

The location of all the equilibria for $\mu = 0.3$

Realms of Possible Motion

Energy Case 3: For $m_1 = \text{Sun}$, $m_2 = \text{Jupiter}$, we divide the Hill's region into five sets; three realms, S, J, X, and two equilibrium neck regions, R_1, R_2

Equilibrium Points

□ Find
$$\bar{q} = (\bar{x}, \bar{y}, \bar{v}_x, \bar{v}_y)$$
 s.t. $\dot{\bar{q}} = f(\bar{q}) = 0$
□ Have form $(\bar{x}, \bar{y}, 0, 0)$ where (\bar{x}, \bar{y}) are critical points of $\bar{U}(x, y)$, i.e., $\bar{U}_x = \bar{U}_y = 0$, where $\bar{U}_a \equiv \frac{\partial \bar{U}}{\partial a}$

Critical Points of $\overline{U}(x,y)$

Equilibrium Points

□ Consider *x*-axis solutions; the collinear equilibria □ $\overline{U}_x = \overline{U}_y = 0 \Rightarrow$ polynomial in *x* □ depends on parameter μ

The graph of $\bar{U}(x,0)$ for $\mu = 0.1$

Equilibrium Regions

Phase space near equilibrium points

- \Box Consider the equilibrium $\bar{q} = L$ (either L_1 or L_2)
- Eigenvalues of linearized equations about L are $\pm \lambda$ and $\pm i\nu$ with corresponding eigenvectors u_1, u_2, w_1, w_2
- \Box Equilibrium region has a saddle \times center geometry

Equilibrium Regions

Eigenvectors Define Coordinate Frame

Let the eigenvectors u_1, u_2, w_1, w_2 be the coordinate axes with corresponding new coordinates $(\xi, \eta, \zeta_1, \zeta_2)$. The differential equations assume the simple form

$$\xi = \lambda \xi, \qquad \dot{\eta} = -\lambda \eta, \ \dot{\zeta}_1 =
u \zeta_2, \qquad \dot{\zeta}_2 = -
u \zeta_1,$$

and the energy function becomes

$$E_l = \lambda \xi \eta + \frac{\nu}{2} \left(\zeta_1^2 + \zeta_2^2 \right).$$

 \Box Two additional integrals: $\xi\eta$ and $\rho \equiv |\zeta|^2 = \zeta_1^2 + \zeta_2^2$, where $\zeta = \zeta_1 + i\zeta_2$

Equilibrium Regions

□ For positive ε and c, the region \mathcal{R} (either \mathcal{R}_1 or \mathcal{R}_2), is determined by

$$E_l = \varepsilon$$
, and $|\eta - \xi| \le c$,

is homeomorphic to $S^2 \times I$; namely, for each fixed value of $(\eta - \xi)$ on the interval I = [-c, c], the equation $E_l = \varepsilon$ determines the two-sphere

$$\frac{\lambda}{4}(\eta+\xi)^2 + \frac{\nu}{2}\left(\zeta_1^2+\zeta_2^2\right) = \varepsilon + \frac{\lambda}{4}(\eta-\xi)^2,$$
 in the variables $((\eta+\xi),\zeta_1,\zeta_2).$

Bounding Spheres of \mathcal{R}

 $\Box n_1$, the left side $(\eta - \xi = -c)$ n_2 , the right side $(\eta - \xi = c)$

The projection of the flow onto the η - ξ plane

Transit & Non-transit Orbits

There are transit orbits, T_{12} , T_{21} and non-transit orbits, T_{11} , T_{22} , separated by asymptotic sets to a p.o.

Transit, non-transit, and asymptotic orbits projected onto the η - ξ plane

Twisting of Orbits

□ We compute that

$$\frac{d}{dt}\arg\zeta = -\nu,$$

i.e., orbits "twist" while in \mathcal{R} in proportion to the time T spent in \mathcal{R} , where

$$T = \frac{1}{\lambda} \left(\ln \frac{2\lambda(\eta^0)^2}{\nu} - \ln(\rho^* - \rho) \right),$$

where η^0 is the initial condition on the bounding sphere and $\rho = \rho^* = 2\varepsilon/\nu$ only for the asymptotic orbits.

 $\label{eq:amplitude} \square \mbox{ Amount of twisting depends sensitively on how close an orbit comes to the cylinders of asymptotic orbits, i.e., depends on <math display="inline">(\rho^*-\rho)>0.$

Orbits in Position Space

Appearance of orbits in position space

□ The general (real) solution has the form

$$u(t) = (x(t), y(t), v_x(t), v_y(t)), = \alpha_1 e^{\lambda t} u_1 + \alpha_2 e^{-\lambda t} u_2 + 2 \operatorname{Re}(\beta e^{i\nu t} w_1),$$

where α_1, α_2 are real and $\beta = \beta_1 + i\beta_2$ is complex.

- \Box Four categories of orbits, depending on the signs of α_1 and α_2 .
- □ By a theorem of Moser [1958], all the qualitative results carry over to the nonlinear system.

Orbits in Position Space

Equilibrium Region: Summary

The Flow in the Equilibrium Region

- In summary, the phase space in the equilibrium region can be partitioned into four categories of distinctly different kinds of motion:
 - (1) periodic orbits, a.k.a., Lyapunov orbits
 - (2) asymptotic orbits, i.e., invariant stable and unstable cylindrical manifolds (henceforth called **tubes**)
 - (3) transit orbits, moving from one realm to another
 - (4) non-transit orbits, returning to their original realm
- □ These categories help us understand the connectivity of the global phase space

Tube Dynamics

All motion between realms connected by equilibrium neck regions \mathcal{R} must occur through the interior of the cylindrical stable and unstable manifold **tubes**

Tube Dynamics: Itineraries

We can find/construct an orbit with any **itinerary**, e.g., $(\ldots, J, X, J, S, J, \ldots)$, where X, J and Sdenote the different realms (symbolic dynamics)

- □ Systematic construction of trajectories with desired itineraries trajectories which use **no fuel**.
 - by linking tubes in the right order \rightarrow **tube hopping**

Ex. Trajectory with Itinerary (X, J, S)

search for an initial condition with this itinerary

seek area on 2D Poincaré section corresponding to (X, J, S) itinerary region; an "itinerarea"

The location of four Poincaré sections U_i

- $\Box \ T_{[X],J}$ is the solid tube of trajectories currently in the X realm and heading toward the J realm
 - Let's seek itinerarea (X, [J], S)

How the tubes connect the U_i

An itinerarea with label (X, [J], S)

 \Box Denote the intersection $(X,[J])\bigcap([J],S)$ by (X,[J],S)

Forward and backward numerical integration of any initial condition within the itinerarea yields a trajectory with the desired itinerary

□ Trajectories with longer itineraries can be produced – e.g., (X, J, S, J, X)

Restricted 4-Body Problem

- □ Solutions to the restricted 4-body problem can be built up from solutions to the rest. 3-body problem
- □ One system of particular interest is a spacecraft in the Earth-Moon vicinity, with the Sun's perturbation
- Example mission: low energy transfer to the Moon

Motivation: systematic construction of trajectories like the 1991 Hiten trajectory. This trajectory uses significantly less on-board fuel than an Apollo-like transfer using third body effects.

□ The key is ballistic, or unpropelled, capture by the Moon

Originally found via a trial-and-error approach, before tube dynamics in the system was known (Belbruno and Miller [1993])

Patched three-body approximation: we assume the S/C's trajectory can be divided into two portions of rest. 3body problem solutions

(1) Sun-Earth-S/C(2) Earth-Moon-S/C

Consider the intersection of tubes in these two systems (if any exists) on a Poincaré section

Earth-Moon-S/C – Ballistic capture

□ Find boundary of tube of lunar capture orbits

Sun-Earth-S/C – Twisting of orbits

Amount of twist depends sensitively on distance from tube boundary; use this to target Earth parking orbit

Integrate initial conditions forward and backward to generate desired trajectory, allowing for velocity discontinuity (maneuver of size ΔV to "tube hop")

- □ Verification: use these initial conditions as an initial guess in restricted 4-body model, the bicircular model
- □ Small velocity discontinuity at patch point:

 $\Delta V =$ 34 m/s

□ Uses 20% less on-board fuel than an Apollo-like transfer − the trade-off is a longer flight time

\Box Multi-moon orbiter, $\Delta V = 22 \text{ m/s} (!!!) \Rightarrow \text{JIMO}$

Low Energy Tour of Jupiter's Moons

Seen in Jovicentric Inertial Frame

Ongoing challenges

- □ Make an automated algorithm for trajectory generation
- Consider model uncertainty, unmodeled dynamics, noise
- □ Trajectory correction when errors occur
 - Re-targeting of original (nominal) trajectory vs. regeneration of nominal trajectory
 - Trajectory correction work for Genesis is a first step

□ Getting *Genesis* onto the destination orbit at the right time, while minimizing fuel consumption

from Serban, Koon, Lo, Marsden, Petzold, Ross, and Wilson [2002]

Incorporation of low-thrust

Spiral out from Europa

Europa to lo transfer

Coordination with goals/constraints of real missions

- e.g., time at each moon, radiation dose, max. flight time
- \Box Decrease flight time: evidence suggests large decrease in time for small increase in ΔV

- □ Spin-off: Results also apply to mathematically similar problems in chemistry and astrophysics
 - phase space transport
- Applications
 - chemical reaction rates
 - asteroid collision prediction

Summary and Conclusions

- □ For certain energies of the planar circular rest. 3-body problem, the phase space can be divided into sets; three large realms and equilibrium regions connecting them
- We consider stable and unstable manifolds of p.o.'s in the equil. regions
- The manifolds have a cylindrical geometry and the physical property that all motion from one realm to another must pass through their interior
- □ The study of the cylindrical manifolds, tube dynamics, can be used to design spacecraft trajectories
- Tube dynamics applicable in other physical problems too