

Invariant Manifolds and Transport in the Three-Body Problem

Shane D. Ross

Control and Dynamical Systems California Institute of Technology

Classical *N*-Body Systems and Applications University of Warwick, 14-20 April 2002

Acknowledgements

- W. Koon, M. Lo, J. Marsden
- G. Gómez, J. Masdemont
- C. Jaffé, D. Farrelly, T. Uzer
- □ K. Howell, B. Barden, R. Wilson
- C. Simó, J. Llibre, R. Martinez
- E. Belbruno, B. Marsden, J. Miller
- L. Petzold, S. Radu
- H. Poincaré, J. Moser
- C. Conley, R. McGehee

Outline

Transport theory

 \Box Time-independent $N\text{-}\mathsf{body}$ Hamiltonian systems

Examples:

- ionization of Rydberg atoms
- restricted three-body problem

Chaotic Dynamics

Transport through a "bottleneck" in phase space; intermittency

Transport Theory

- **Transport theory**
 - Ensembles of phase space trajectories
 - How long (or likely) to move from one region to another?
 - Determine transition probabilities, correlation functions

□ Applications:

- Atomic ionization rates
- Chemical reaction rates
- Comet and asteroid escape rates, resonance transition probabilities, collision probabilities

Transport Theory

Transport in the solar system

- □ For objects of interest
- e.g., Jupiter family comets, near-Earth asteroids, dust
 Identify phase space objects governing transport
 View N-body as multiple restricted 3-body problems
 Look at stable and unstable manifold of periodic orbits associated with Lagrange points and mean motion resonances
- Use these to **compute statistical quantities**
 - e.g., probability of resonance transition, escape rates

Transport Theory

of current astrophysical interest for understanding the transport of solar system material

- eg, how ejecta gets from Mars to Earth
- how likely is *Shoemaker-Levy* 9-type collision

Jupiter Family Comets

Physical example of intermittency

- □ We consider the historical record of the comet Oterma from 1910 to 1980
 - first in an inertial frame
 - then in a rotating frame
 - a special case of pattern evocation

similar pictures exist for many other comets

Jupiter Family Comets

- Rapid transition: outside to inside Jupiter's orbit.
 - Captured temporarily by Jupiter during transition.
 - Exterior (2:3 resonance) to interior (3:2 resonance).

x (inertial frame)

Viewed in Rotating Frame

□ Oterma's orbit in rotating frame with some invariant manifolds of the 3-body problem superimposed.

"Reactants"

"Products"

Systems with potential barriers

Electron near a nucleus with crossed electric and magnetic fields

Comet near the Sun and Jupiter

Partition is specific to problem

□ We desire a way of describing dynamical boundaries that represent the "frontier" between qualitatively different types of behavior

Example: motion of a comet

motion around the Sunmotion around Jupiter

Statement of Problem

 $\begin{tabular}{ll} \square Suppose we study the motion on a manifold \mathcal{M} \\ \hline \square Suppose \mathcal{M} is partitioned into disjoint regions $\end{tabular}$ \end{tabular}$ \end{tabuar}$ \end{tabuar}$ \end{ta$

$$R_i, i=1,\ldots,N_R,$$

such that

$$\mathcal{M} = \bigcup_{i=1}^{N_R} R_i.$$

- To keep track of the initial condition of a point, we say that *initially* (at t = 0) region R_i is uniformly covered with species S_i .
- Thus, species type of a point indicates the region in which it was located initially.

Statement of Problem

Statement of the transport problem: Describe the distribution of species $S_i, i = 1, \ldots, N_R$, throughout the regions $R_j, j = 1, \ldots, N_R$, for any time t > 0.

Statement of Problem

Some quantities we would like to compute are: $T_{i,j}(t) =$ the total amount of species S_i contained in region R_j at time t $F_{i,j}(t) = \frac{dT_{i,j}}{dt}(t) =$ the flux of species S_i into region R_j at time t

Hamiltonian Systems

Time-independent Hamiltonian H(q, p)

- $\Box N$ degrees of freedom
- □ Motion constrained to a (2N 1)-dimensional energy surface \mathcal{M}_E corresponding to a value H(q, p) = E = constant

□ Symplectic area is conserved along the flow

$$\oint_{\mathcal{L}} p \cdot dq = \int_{\mathcal{A}} dp \wedge dq = \text{constant}$$

Poincaré Section

□ Suppose there is another (2N - 1)-dimensional surface Q that is transverse (i.e., nowhere parallel) to the flow in some local region.
 □ The Poincaré section S is the (2N - 2)-dimensional intersection of M_E with Q.

Example for N=2

Restricted 3-body problem (planar) Partition the energy surface: S, J, X regions

Position Space Projection

Equilibrium Region

Look at motion near the potential barrier, i.e. the equilibrium region

Position Space Projection

Local Dynamics

 \Box For fixed energy, the equilibrium region $\simeq S^2 \times \mathbb{R}$.

• Stable/unstable manifolds of periodic orbit define mappings between bounding spheres on either side of the barrier

Cross-section of Equilibrium Region

Equilibrium Region

Transition State Theory

- □ This is related to the **transition state theory** of the chemical literature.
- □ Wiggins, Wiesenfeld, Jaffé, and Uzer [2001] extend transition state theory to higher dimensional systems.
- Interesting connection between chemical and celestial dynamics!

Tubes in the 3-Body Problem

Stable and unstable manifold tubes

• Control transport through the potential barrier.

Flux between Regions

- **Tubes of transit orbits are the relevant objects to study**
 - \Box Tubes determine the flux between regions $F_{i,j}(t)$.
 - □ Net flux is zero for volume-preserving motion, so we consider the **one-way flux**
 - Example: $F_{J,S}(t)$ = volume of trajectories that escape from the Jupiter region into the Sun region per unit time.

Fluxes give rates and probabilities

- Jaffé, Ross, Lo, Marsden, Farrelly, and Uzer [2002] computed the rate of escape of asteroids temporarily captured by Mars.
- RRKM-like statistical approach
 - similar to chemical dynamics, see Truhlar [1996]
- Consider an asteroid (or other body) in orbit around Mars (perhaps impact ejecta) at a 3-body energy such that it can escape toward the Sun.
- \Box Interested in rate of escape of such bodies at a fixed energy, i.e. $F_{M,S}(t)$

- RRKM assumption: all asteroids in the Mars region at fixed energy are equally likely to escape. Then
 - $Escape rate = \frac{flux across potential barrier}{Mars region phase space volume}$
- Compare with Monte Carlo simulations of 107,000 particles
 - randomly selected initial conditions at constant energy

Theory and numerical simulations agree well.
 Monte Carlo simulation (dashed) and theory (solid)

More exotic transport between regions

Look at the intersections between the interior of stable and unstable tubes on the same energy surface.
 Could be from different potential barriers.

Example: Comet transport between outside and inside of Jupiter (i.e., Oterma-like transitions)

Look at Poincaré section intersected by both tubes.
 Choosing surface {x = constant; p_x < 0}, we look at the canonical plane (y, p_y).

□ Relative canonical area gives relative flux of orbits.

□ Under RRKM assumptions, can compute probability of transition from one region to another.

Mixing

By keeping track of the intersections of the tubes, one can describe the mixing of different regions $(T_{i,j}(t))$.

- It can get complicated!
- Example: atomic transition rates (Jaffé, Farrelly, Uzer [1999])

Collision

Collision probabilities

o computed from tube intersection with planet on Poincaré section

Collision

Statistical approach to low velocity impact probabilities

• eg, *Shoemaker-Levy 9* and Earth crossers

Conclusion and Future Work

Transport in the solar system

- □ View solar system as many restricted 3-body problems
- Planar restricted 3-body problem
 - Stable and unstable manifold tubes of periodic orbits can be used to compute statistical quantities of interest
 - Asteroid escape problem: first application of RRKM-like statistical approach to celestial mechanics
 - Theory and numerical simulation agree well

Conclusion and Future Work

Future Work

- □ Extend planar results to spatial problem theory makes computation in high dimensions much easier
- □ Transport between mean motion resonances
 - Slow migration between resonances leading to temporary capture by or close encounter with a planet.
- □ Transport between planets
 - e.g., comets switching "control" from Saturn to Jupiter
- Consider drag-perturbed case
 - e.g., interplanetary dust particles

Transport between MMRs

- Transport rates between mean motion resonances (MMRs) can be computed via a lobe dynamics approach (see Wiggins [1992]).
- Several statistical quantities of interest can be computed as a function of planetary mass and particle energy.
 - \bullet average trapping time in a $p:q~\mathsf{MMR}$
 - flux entering p:q MMR from pr:q MMR

Transport between MMRs

We can compute the resonance regions

Transport between MMRs

A direct transition from a p:q to a p':q' MMR is possible only if the exit lobe of a p:q turnstile overlaps with the entry lobe of a p':q' turnstile.

MMRs and Close Encounters

Poincaré section: plot resonance regions

2:3 exterior MMR with Jupiter

MMRs and Close Encounters

Same section: tube cross-sections are closed curves

Particles inside curves move toward or away from Jupiter

MMRs and Close Encounters

Regions of overlap lead to/from close encounters

Regions of overlap occur

Transport between Planets

Comets transfer between the giant planets eg, jumping between "tubes" of Saturn and Jupiter

Circumstellar Dust Clouds

Drag-perturbed case important for planet-finding

References

- Jaffé, C., S.D. Ross, M.W. Lo, J. Marsden, D. Farrelly, and T. Uzer [2002] *Statistical theory of asteroid escape rates*. Physical Review Letters, to appear.
- Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2001] Resonance and capture of Jupiter comets. Celestial Mechanics and Dynamical Astronomy 81(1-2), 27–38.
- Gómez, G., W.S. Koon, M.W. Lo, J.E. Marsden, J. Masdemont and S.D. Ross
 [2001] *Invariant manifolds, the spatial three-body problem and space mission design.* AAS/AIAA Astrodynamics Specialist Conference.
- Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2000] Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10(2), 427–469.

For papers, movies, etc., visit the website: http://www.cds.caltech.edu/~shane

The End