
C �� �� �� � Dynamical S�� ��	 �

CA L T EC H

Invariant Manifolds
and Transport in the
Three-Body Problem

Shane D. Ross
Control and Dynamical Systems

California Institute of Technology

Classical N -Body Systems and Applications
University of Warwick, 14-20 April 2002



Acknowledgements
¤W. Koon, M. Lo, J. Marsden
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Outline

¥Transport theory

¤Time-independent N -body Hamiltonian systems

¤ Examples:
• ionization of Rydberg atoms

• restricted three-body problem
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Chaotic Dynamics
Transport through a “bottleneck” in phase space; intermittency
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Transport Theory

¥Chaotic dynamics
=⇒ statistical methods

¥Transport theory

¤ Ensembles of phase space trajectories
• How long (or likely) to move from one region to another?

• Determine transition probabilities, correlation functions

¤Applications:
• Atomic ionization rates

• Chemical reaction rates

• Comet and asteroid escape rates,
resonance transition probabilities,
collision probabilities
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Transport Theory

¥Transport in the solar system

¤ For objects of interest
• e.g., Jupiter family comets, near-Earth asteroids, dust

¤ Identify phase space objects governing transport

¤View N -body as multiple restricted 3-body problems

¤ Look at stable and unstable manifold of periodic or-
bits associated with Lagrange points and mean motion
resonances

¤Use these to compute statistical quantities
• e.g., probability of resonance transition, escape rates
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Transport Theory
¤ of current astrophysical interest for understanding the
transport of solar system material
• eg, how ejecta gets from Mars to Earth

• how likely is Shoemaker-Levy 9-type collision
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Jupiter Family Comets

¥Physical example of intermittency

¤We consider the historical record of the comet Oterma
from 1910 to 1980
• first in an inertial frame

• then in a rotating frame

• a special case of pattern evocation

¤ similar pictures exist for many other comets
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Jupiter Family Comets
• Rapid transition: outside to inside Jupiter’s orbit.

◦ Captured temporarily by Jupiter during transition.

◦ Exterior (2:3 resonance) to interior (3:2 resonance).
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Viewed in Rotating Frame
¤Oterma’s orbit in rotating frame with some invariant
manifolds of the 3-body problem superimposed.
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Partition the Phase Space
“Reactants” “Products”

12



Partition the Phase Space

¥Systems with potential barriers

¤ Electron near a nucleus with crossed electric and
magnetic fields

Nucleus

"Bound" "Free"

Potential Configuration Space
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Partition the Phase Space
¤ Comet near the Sun and Jupiter
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Partition the Phase Space

¥Partition is specific to problem

¤We desire a way of describing dynamical boundaries
that represent the “frontier” between qualitatively
different types of behavior

¥Example: motion of a comet

¤motion around the Sun

¤motion around Jupiter
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Statement of Problem
¤ Suppose we study the motion on a manifold M

¤ Suppose M is partitioned into disjoint regions

Ri, i = 1, . . . , NR,

such that

M =

NR
⋃

i=1

Ri.

¤To keep track of the initial condition of a point, we say
that initially (at t = 0) region Ri is uniformly covered
with species Si.

¤Thus, species type of a point indicates the region in
which it was located initially.
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Statement of Problem
¤ Statement of the transport problem:
Describe the distribution of species
Si, i = 1, . . . , NR, throughout the regions
Rj, j = 1, . . . , NR, for any time t > 0.

R1

R2

R3

R4

17



Statement of Problem
¤ Some quantities we would like to compute are:

Ti,j(t) = the total amount of species Si contained in
region Rj at time t

Fi,j(t) =
dTi,j

dt
(t) = the flux of species Si into region Rj

at time t

R1

R2

R3

R4
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Hamiltonian Systems

¥Time-independent Hamiltonian H(q, p)

¤N degrees of freedom

¤Motion constrained to a (2N − 1)-dimensional
energy surface ME corresponding to a value
H(q, p) = E = constant

¤ Symplectic area is conserved along the flow
∮

L

p · dq =

∫

A

dp ∧ dq = constant
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Poincaré Section

¤ Suppose there is another (2N − 1)-dimensional
surface Q that is transverse (i.e., nowhere parallel) to
the flow in some local region.

¤The Poincaré section S is the (2N − 2)-dimensional
intersection of ME with Q.
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Example for N=2

¥Restricted 3-body problem (planar)

¤ Partition the energy surface: S, J, X regions

S JL1 L2
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Region (X)
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 Region (S)

Jupiter
Region (J)
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Region

Position Space Projection
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Equilibrium Region

¥Look at motion near the potential
barrier, i.e. the equilibrium region
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Local Dynamics

¤ For fixed energy, the equilibrium region ' S2 × R.

• Stable/unstable manifolds of periodic orbit define mappings
between bounding spheres on either side of the barrier
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Transition State Theory
¤This is related to the transition state theory of the
chemical literature.

¤Wiggins, Wiesenfeld, Jaffé, and Uzer [2001] extend tran-
sition state theory to higher dimensional systems.

¤ Interesting connection between chemical and celestial
dynamics!
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Tubes in the 3-Body Problem
¤ Stable and unstable manifold tubes

• Control transport through the potential barrier.
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Flux between Regions

¥Tubes of transit orbits are the relevant
objects to study

¤Tubes determine the flux between regions Fi,j(t).

¤Net flux is zero for volume-preserving motion, so we
consider the one-way flux

¤ Example: FJ,S(t)= volume of trajectories that escape
from the Jupiter region into the Sun region per unit
time.
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Transition Rates

¥Fluxes give rates and probabilities

¤ Jaffé, Ross, Lo, Marsden, Farrelly, and Uzer [2002]
computed the rate of escape of asteroids
temporarily captured by Mars.

¤ RRKM-like statistical approach
• similar to chemical dynamics, see Truhlar [1996]

¤ Consider an asteroid (or other body) in orbit around
Mars (perhaps impact ejecta) at a 3-body energy such
that it can escape toward the Sun.

¤ Interested in rate of escape of such bodies at a fixed
energy, i.e. FM,S(t)
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Transition Rates
¤ RRKM assumption: all asteroids in the Mars region
at fixed energy are equally likely to escape.
Then

Escape rate =
flux across potential barrier

Mars region phase space volume

¤ Compare with Monte Carlo simulations of 107,000
particles
• randomly selected initial conditions at constant energy
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Transition Rates
� Theory and numerical simulations agree well.
◦Monte Carlo simulation (dashed) and theory (solid)
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Transition Rates

¥More exotic transport between regions

¤ Look at the intersections between the interior of sta-
ble and unstable tubes on the same energy surface.

¤ Could be from different potential barriers.
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Transition Rates
¤ Example: Comet transport between outside and inside
of Jupiter (i.e., Oterma-like transitions)

Exterior
Region

Interior
Region

Jupiter
Region

Forbidden
Region

Stable
Manifold

Unstable
Manifold

Jupiter
Sun

Rapid Transition

x (rotating frame)

y
 (
ro
ta
ti
n
g
 f
ra
m
e
)

L2

(a) (b)

x (rotating frame)

y
 (
ro
ta
ti
n
g
 f
ra
m
e
)

Stable
Manifold

Unstable
Manifold

Unstable
Manifold

Stable
Manifold

L2L1

Capture
Orbit

Jupiter

31



Transition Rates
¤ Look at Poincaré section intersected by both tubes.

¤ Choosing surface {x = constant; px < 0}, we look at
the canonical plane (y, py).
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Transition Rates
¤ Relative canonical area gives relative flux of orbits.

¤Under RRKM assumptions, can compute probability of
transition from one region to another.
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Mixing
¤By keeping track of the intersections of the tubes, one
can describe the mixing of different regions (Ti,j(t)).

• It can get complicated!

• Example: atomic transition rates (Jaffé, Farrelly, Uzer [1999])
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Collision

�Collision probabilities
◦ computed from tube intersection with planet on Poincaré section

← Diameter of planet →
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Collision
¤ Statistical approach to low velocity impact probabilities

• eg, Shoemaker-Levy 9 and Earth crossers
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Conclusion and Future Work

¥Transport in the solar system

¤View solar system as many restricted 3-body problems

¤ Planar restricted 3-body problem
• Stable and unstable manifold tubes of periodic orbits can
be used to compute statistical quantities of interest

• Asteroid escape problem: first application of RRKM-like
statistical approach to celestial mechanics

• Theory and numerical simulation agree well
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Conclusion and Future Work

¥Future Work

¤ Extend planar results to spatial problem — theory
makes computation in high dimensions much easier

¤Transport between mean motion resonances
• Slow migration between resonances leading to temporary
capture by or close encounter with a planet.

¤Transport between planets
• e.g., comets switching “control” from Saturn to Jupiter

¤ Consider drag-perturbed case
• e.g., interplanetary dust particles

38



Transport between MMRs

¤Transport rates between mean motion resonances (MMRs)
can be computed via a lobe dynamics approach (see
Wiggins [1992]).

¤ Several statistical quantities of interest can be computed
as a function of planetary mass and particle energy.

• average trapping time in a p : q MMR

• flux entering p : q MMR from p′ : q′ MMR
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Transport between MMRs
We can compute the resonance regions
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Transport between MMRs
A direct transition from a p : q to a p′ : q′ MMR is pos-
sible only if the exit lobe of a p : q turnstile overlaps
with the entry lobe of a p′ : q′ turnstile.
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MMRs and Close Encounters
Poincaré section: plot resonance regions

2:3 exterior MMR with Jupiter
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MMRs and Close Encounters
Same section: tube cross-sections are closed curves

Particles inside curves move toward or away from Jupiter
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MMRs and Close Encounters

Regions of overlap lead to/from close encounters

Regions of overlap occur
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Transport between Planets
Comets transfer between the giant planets
eg, jumping between “tubes” of Saturn and Jupiter
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Circumstellar Dust Clouds
Drag-perturbed case important for planet-finding
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