Invariant Manifolds

and Transport in the
 Three-Body Problem

Shane D. Ross

Control and Dynamical Systems California Institute of Technology
Classical N-Body Systems and Applications University of Warwick, 14-20 April 2002

Acknowledgements

\square W. Koon, M. Lo, J. Marsden
\square G. Gómez, J. Masdemont
\square C. Jaffé, D. Farrelly, T. Uzer
\square K. Howell, B. Barden, R. Wilson
\square C. Simó, J. Llibre, R. Martinez
\square E. Belbruno, B. Marsden, J. Miller
\square L. Petzold, S. Radu
\square H. Poincaré, J. Moser
\square C. Conley, R. McGehee

Outline

Transport theory
\square Time-independent N-body Hamiltonian systems
\square Examples:

- ionization of Rydberg atoms
- restricted three-body problem

Chaotic Dynamics

Transport through a "bottleneck" in phase space; intermittency

Transport Theory

Chaotic dynamics
\Longrightarrow statistical methods
Transport theory
\square Ensembles of phase space trajectories

- How long (or likely) to move from one region to another?
- Determine transition probabilities, correlation functions
\square Applications:
- Atomic ionization rates
- Chemical reaction rates
- Comet and asteroid escape rates, resonance transition probabilities, collision probabilities

Transport Theory

Transport in the solar system
\square For objects of interest

- e.g., Jupiter family comets, near-Earth asteroids, dust
\square Identify phase space objects governing transport
\square View N-body as multiple restricted 3-body problems
\square Look at stable and unstable manifold of periodic orbits associated with Lagrange points and mean motion resonances
\square Use these to compute statistical quantities
- e.g., probability of resonance transition, escape rates

Transport Theory

\square of current astrophysical interest for understanding the transport of solar system material

- eg, how ejecta gets from Mars to Earth
- how likely is Shoemaker-Levy 9-type collision

Jupiter Family Comets

Physical example of intermittency
\square We consider the historical record of the comet Oterma from 1910 to 1980

- first in an inertial frame
- then in a rotating frame
- a special case of pattern evocation
\square similar pictures exist for many other comets

Jupiter Family Comets

- Rapid transition: outside to inside Jupiter's orbit.
- Captured temporarily by Jupiter during transition.
- Exterior (2:3 resonance) to interior (3:2 resonance).

Viewed in Rotating Frame

\square Oterma's orbit in rotating frame with some invariant manifolds of the 3-body problem superimposed.

Partition the Phase Space

"Reactants"
"Products"

Partition the Phase Space

Systems with potential barriers

\square Electron near a nucleus with crossed electric and magnetic fields

Potential

Configuration Space

Partition the Phase Space

\square Comet near the Sun and Jupiter

Partition the Phase Space

- Partition is specific to problem
\square We desire a way of describing dynamical boundaries that represent the "frontier" between qualitatively different types of behavior
\square Example: motion of a comet
\square motion around the Sun
\square motion around Jupiter

Statement of Problem

\square Suppose we study the motion on a manifold \mathcal{M}
\square Suppose \mathcal{M} is partitioned into disjoint regions

$$
R_{i}, i=1, \ldots, N_{R}
$$

such that

$$
\mathcal{M}=\bigcup_{i=1}^{N_{R}} R_{i}
$$

\square To keep track of the initial condition of a point, we say that initially (at $t=0$) region R_{i} is uniformly covered with species S_{i}.
\square Thus, species type of a point indicates the region in which it was located initially.

Statement of Problem

\square Statement of the transport problem:
Describe the distribution of species
$S_{i}, i=1, \ldots, N_{R}$, throughout the regions $R_{j}, j=1, \ldots, N_{R}$, for any time $t>0$.

Statement of Problem

\square Some quantities we would like to compute are: $T_{i, j}(t)=$ the total amount of species S_{i} contained in region R_{j} at time t
$F_{i, j}(t)=\frac{d T_{i, j}}{d t}(t)=$ the flux of species S_{i} into region R_{j} at time t

Hamiltonian Systems

Time-independent Hamiltonian $H(q, p)$
$\square N$ degrees of freedom
\square Motion constrained to a ($2 N-1$)-dimensional energy surface \mathcal{M}_{E} corresponding to a value $H(q, p)=E=\mathrm{constant}$
\square Symplectic area is conserved along the flow

$$
\oint_{\mathcal{L}} p \cdot d q=\int_{\mathcal{A}} d p \wedge d q=\mathrm{constant}
$$

Poincaré Section

\square Suppose there is another $(2 N-1)$-dimensional surface \mathcal{Q} that is transverse (i.e., nowhere parallel) to the flow in some local region.
\square The Poincaré section \mathcal{S} is the $(2 N-2)$-dimensional intersection of \mathcal{M}_{E} with \mathcal{Q}.

Example for $N=2$

\square Restricted 3-body problem (planar)
\square Partition the energy surface: $\mathbf{S}, \mathbf{J}, \mathbf{X}$ regions

Position Space Projection

Equilibrium Region

Look at motion near the potential barrier, i.e. the equilibrium region

Position Space Projection

Local Dynamics

\square For fixed energy, the equilibrium region $\simeq S^{2} \times \mathbb{R}$.

- Stable/unstable manifolds of periodic orbit define mappings between bounding spheres on either side of the barrier

Cross-section of Equilibrium Region

Equilibrium Region

Transition State Theory

\square This is related to the transition state theory of the chemical literature.
\square Wiggins, Wiesenfeld, Jaffé, and Uzer [2001] extend transition state theory to higher dimensional systems.
\square Interesting connection between chemical and celestial dynamics!

Tubes in the 3-Body Problem

\square Stable and unstable manifold tubes

- Control transport through the potential barrier.

Flux between Regions

Tubes of transit orbits are the relevant objects to study
\square Tubes determine the flux between regions $F_{i, j}(t)$.
\square Net flux is zero for volume-preserving motion, so we consider the one-way flux
\square Example: $F_{J, S}(t)=$ volume of trajectories that escape from the Jupiter region into the Sun region per unit time.

Transition Rates

Fluxes give rates and probabilities

\square Jaffé, Ross, Lo, Marsden, Farrelly, and Uzer [2002] computed the rate of escape of asteroids temporarily captured by Mars.
\square RRKM-like statistical approach

- similar to chemical dynamics, see Truhlar [1996]
\square Consider an asteroid (or other body) in orbit around Mars (perhaps impact ejecta) at a 3-body energy such that it can escape toward the Sun.
\square Interested in rate of escape of such bodies at a fixed energy, i.e. $F_{M, S}(t)$

Transition Rates

\square RRKM assumption: all asteroids in the Mars region at fixed energy are equally likely to escape. Then

$$
\text { Escape rate }=\frac{\text { flux across potential barrier }}{\text { Mars region phase space volume }}
$$

\square Compare with Monte Carlo simulations of 107,000 particles

- randomly selected initial conditions at constant energy

Transition Rates

\square Theory and numerical simulations agree well.

- Monte Carlo simulation (dashed) and theory (solid)

Transition Rates

More exotic transport between regions
\square Look at the intersections between the interior of stable and unstable tubes on the same energy surface.
\square Could be from different potential barriers.

Transition Rates

\square Example: Comet transport between outside and inside of Jupiter (i.e., Oterma-like transitions)

(a)

Transition Rates

\square Look at Poincaré section intersected by both tubes.
\square Choosing surface $\left\{x=\right.$ constant; $\left.p_{x}<0\right\}$, we look at the canonical plane $\left(y, p_{y}\right)$.

Position Space

Canonical Plane $\left(y, p_{y}\right)$

Transition Rates

\square Relative canonical area gives relative flux of orbits.
\square Under RRKM assumptions, can compute probability of transition from one region to another.

y
Canonical Plane $\left(y, p_{y}\right)$

Mixing

\square By keeping track of the intersections of the tubes, one can describe the mixing of different regions $\left(T_{i, j}(t)\right)$.

- It can get complicated!
- Example: atomic transition rates (Jaffé, Farrelly, Uzer [1999])

Collision

Collision probabilities

- computed from tube intersection with planet on Poincaré section

Close up of collision region

\leftarrow Diameter of planet \rightarrow

Collision

\square Statistical approach to low velocity impact probabilities

- eg, Shoemaker-Levy 9 and Earth crossers

Example Collision Trajectory

Conclusion and Future Work

Transport in the solar system
\square View solar system as many restricted 3-body problems
\square Planar restricted 3-body problem

- Stable and unstable manifold tubes of periodic orbits can be used to compute statistical quantities of interest
- Asteroid escape problem: first application of RRKM-like statistical approach to celestial mechanics
- Theory and numerical simulation agree well

Conclusion and Future Work

Future Work

\square Extend planar results to spatial problem - theory makes computation in high dimensions much easier
\square Transport between mean motion resonances

- Slow migration between resonances leading to temporary capture by or close encounter with a planet.
\square Transport between planets
- e.g., comets switching "control" from Saturn to Jupiter
\square Consider drag-perturbed case
- e.g., interplanetary dust particles

Transport between MMRs

\square Transport rates between mean motion resonances (MMRs) can be computed via a lobe dynamics approach (see Wiggins [1992]).
\square Several statistical quantities of interest can be computed as a function of planetary mass and particle energy.

- average trapping time in a $p: q$ MMR
- flux entering $p: q$ MMR from $p \prime: q \prime$ MMR

Transport between MMRs

We can compute the resonance regions

Transport between MMRs

A direct transition from a $p: q$ to a $p \prime: q \prime$ MMR is possible only if the exit lobe of a $p: q$ turnstile overlaps with the entry lobe of a $p \prime: q \prime$ turnstile.

MMRs and Close Encounters

Poincaré section: plot resonance regions

2:3 exterior MMR with Jupiter

MMRs and Close Encounters

Same section: tube cross-sections are closed curves

Particles inside curves move toward or away from Jupiter

MMRs and Close Encounters

Regions of overlap lead to/from close encounters

Regions of overlap occur

Transport between Planets

Comets transfer between the giant planets eg, jumping between "tubes" of Saturn and Jupiter

Semimajor Axis of Comet Smirnova-Chernykh (AD 1800-2100)

Circumstellar Dust Clouds

Drag-perturbed case important for planet-finding

References

- Jaffé, C., S.D. Ross, M.W. Lo, J. Marsden, D. Farrelly, and T. Uzer [2002] Statistical theory of asteroid escape rates. Physical Review Letters, to appear.
- Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2001] Resonance and capture of Jupiter comets. Celestial Mechanics and Dynamical Astronomy 81(1-2), 27-38.
- Gómez, G., W.S. Koon, M.W. Lo, J.E. Marsden, J. Masdemont and S.D. Ross [2001] Invariant manifolds, the spatial three-body problem and space mission design. AAS/AIAA Astrodynamics Specialist Conference.
- Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2000] Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10(2), 427-469.

For papers, movies, etc., visit the website: http://www.cds.caltech.edu/~shane

The End

